Срок окупаемости солнечных коллекторов

Срок окупаемости солнечных коллекторов

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(200000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Срок окупаемости солнечных коллекторов

Определить экономическую эффективность от применения солнечных коллекторов просто.

Для этого сначала нужно определить количества тепла, которое обеспечит солнечный коллектор за год (выработку), для чего Количество солнечной радиации на поверхность земли в этом месте умножить на Средний коэффициент полезного действия КПД солнечного коллектора.

Например, для Киева: Количество солнечной радиации 1000 кВтч/м2/год умножим на КПД наиболее эффективного солнечного коллектора-нагревателя 55%, получим выработку тепла солнечным коллектором 550 кВтч/м2/год. То есть один метр квадратный хорошего солнечного коллектора произведет 550 киловатт тепла за год.

С учетом сезонного изменения солнечной радиации: зимой будет произведено 14% или 77 кВт тепла, весной 29% или 160 кВт, летом 36% или 198 кВт, осенью 116 кВт. В декабре и январе выработка тепла минимальна, и составит в месяц 3,3% от общего производства тепла в год, или 18 кВт в месяц. Именно поэтому солнечные коллектора редко используют для отопления.

Для определения экономической эффективности — полученные 550 кВт тепла нужно сравнить с другим, альтернативным источником тепла. Например, 550 кВт тепла можно получить из электроэнергии, для чего понадобится 550 кВтч электроэнергии. Тариф для населения на электроэнергию в 2009 году в Украине составлял 0,18. 0,23 гривны/кВтч или 0,016. 0,02 евро/кВтч. Следовательно, для производства 550 кВт тепла нужно потратить 550х0,016. 0,02 = 8,8. 11 евро в год. Отсюда можно определить срок окупаемости теплового солнечного коллектора по сравнению с другим, альтернативным видом энергии. Срок службы теплового солнечного коллектора обычно до 10 лет.

Читайте также:  Определите индекс доходности инвестиционного проекта по данным таблицы

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

Источник

Выгодно ли устанавливать солнечный коллектор, какой потребуется

В Европе крыши домов заставлены приспособлениями улавливающими и преобразующими солнечную энергию. У нас такое встретишь не часто. Почему? Есть ли целесообразность устанавливать в частном доме солнечный коллектор, и какой конструкции он должен быть…

Конструкции солнечных коллекторов

    Пластинчатые.
    Поглотителем солнечной энергии является пластина покрытая чаще никелем. К ней прикреплены медные трубки, по которым движется теплоноситель. Другой вариант, — трубки выдавленные в самой нагревающейся пластине состоящей из двух половинок.
    Пластина закрывается в утепленный короб, с одной стороны которого находится прочное самоочищающееся стекло.

    Трубчатый вакуумный
    В основе — вакуумные трубки из стекла, покрытые снизу светоотражающим материалом, а сверху — металлизированным напылением, которое препятствует уходу отраженной энергии. Внутри стеклянной трубки размещается трубка
    с движущимся теплоносителем. Ряды таких улавливателей солнечной энергии закрепляются к теплоизолированным сборным шинам с теплоносителем. Роль утеплителя в самой трубке играет вакуум.

Тепловые трубки.
Применяются сходные вакуумные трубки, но внутри них находятся медные трубки с легкоиспаряющейся жидкостью. Она преобразуется в пар солнечным теплом и сразу же конденсируется на теплообменнике в верхней части, отдавая энергию теплоносителю, и такой процесс идет постоянно.

Летний нагреватель.
Пластинчатый коллектор, но в самом дешевом исполнении — без стекла и теплоизоляции, с полимерным шлангом… Эффективно может использоваться только когда температура окружающего воздуха большая. Но нагрев воды намного более интенсивный, чем просто у бочки для летнего душа. Чаще по такой системе движется непосредственно вода, которая используется для душа и бассейна, без промежуточного бойлера.

Сколько энергии дает солнце

Количество солнечной энергия, которая приходится на единицу площади (метр квадратный), весьма различается на разных географических широтах. В северных регионах энергии слишком мало, чтобы речь шла о применении коллектора. Для эффективного и самоокупаемого применения солнечных коллекторов реально могут рассматриваться только южные регионы, южнее 52 параллели.

    В этих районах, в период минимального высоты солнца в декабре, можно получить максимум 80 Вт/м2

В июне, когда солнце находится в наивысшей точке, — 600 Вт/м2.

  • В апреле и сентябре — около 350 Вт/м2.
  • Важнейшая характеристика каждой модели коллектора — минимальная солнечная энергия, при которой от прибора можно получать тепло.

    Известно, что варианты с вакуумными трубками начинают работать при 20 Вт/м2. А пластинчатые — в среднем от 80 Вт/м2.

    Если сравнить имеющуюся солнечную энергию с характеристиками различных типов коллекторов, то можно заметить, что трубчатый будет способен работать круглый год. Зимой также, хоть отдача его и будет минимальна.
    Пластинчатый же можно применять только в межсезонье и летом.

    Для чего может понадобиться солнечный коллектор

    Отопление необходимо в зимний период, а в это время отдача коллекторов весьма небольшая. Летом же отопление не нужно вовсе, и в это время коллектор способен генерировать максимум энергии.

    Возникает не разрешимое противоречие — когда энергии нужно больше всего для отопления, ее просто нет.

    Поэтому солнечный коллектор целесообразней всего использовать для приготовления горячей воды, которая понадобится всегда. Зимой коллектору намного больше будут помогать обычные источники энергии — от системы отопления или элеткронагрев.

    Для ГВС коллектор намного выгоднее потому, что за период своей эксплуатации круглый сезон с него можно забрать и использовать больше энергии, чем если бы это делалось для отопления. А это значит, что прибор может оказаться выгодным, самоокупаемым.

    Читайте также:  Настроить gtx 1650 для майнинга

    КПД и эффективность

    Коллектор наиболее выгодно использовать для подогрева воды, если он генерирует не более чем 70% требуемой энергии. Остальная энергия добирается за счет подогревом от других источников.

    Почему солнечный коллектор не может сделать горячую воду, обычных 50 градусов?

    КПД коллекторов быстро падает с ростом температуры теплоносителя. На графике видно, что пластинчатые приборы наиболее сильно зависят от температуры теплоносителя.

    Пока теплоноситель холодный — КПД коллектора наибольший.

    Отсюда, при проектировании систем нагрева отопления, следует учитывать довольно простой вывод — сначала нужно нагревать объем воды от солнечного коллектора. А затем догревать его до нужной температуры, например, электричеством.

    Также из характеристик приборов известно:

      Трубчатые коллекторы имеют куда меньшую зависимость КПД от редуцируемой температуры. Могут использоваться круглый год, в том числе и для отопления.

  • Пластинчатые. Их эффективность намного больше летом, при прямом солнечном свете, они дают больше энергии чем трубчатые. Выгодней для приготовления ГВС. Зимой же, как указывалось, эффективность крайне низкая — не применимы.
  • Экономическая целесообразность — большой или маленький коллектор нужен?

    Чем больше площадь солнечного коллектора, тем больше он поглощает энергии и тем больше будет температура теплоносителя. Но, согласно приведенным выше данным, с ростом температуры теплоносителя КПД приборов уменьшается.

    Таким образом, слишком большой коллектор, при больших затратах, будет работать ненамного эффективней, чем маленький, — он просто не сможет поднять температуру выше из-за резкого падения КПД.

    Как указывалось, для ГВС коллектор окажется экономически целесообразным, если будет давать не более 70 % необходимой энергии.

    Но для радиаторного отопления, температура требуется обычно гораздо выше — до 80 градусов, причем зимой.
    Здесь же коллектор окажется выгодным если будет генерировать не более 20-30% энергии.
    Т.е. площадь коллектора не должна быть слишком большой, с целью добиться более высокой температуры, иначе прибор быстро выйдет за рамки окупаемости.

    Какая площадь солнечного коллектора потребуется

    Существуют сложные расчеты наиболее экономически целесообразных площадей солнечных коллекторов. Ниже приведены конечные рекомендации по подбору площади этих приборов, в реальных экономических условиях при низких ценах на углеводороды, по сравнению с Европой.

    Количество энергии для ГВС полностью зависит от количества используемой воды. Поэтому данные приводятся из расчета на одного жителя.

      Для ГВС на одного человека целесообразная площадь солнечного коллектора находится в пределах 1,0 — 1,4 метра в зависимости от степени расхода воды.

  • Для отопления расчет такой — площадь прибора не более 0,4 м2 на каждый квадратный метр площади дома. Соответственно, для небольшого дома в 100 кв, предел целесообразности — 40 м кв. прибора.
  • Воспользовавшись подобными рекомендациями, или исходя из приведенных выше данных, можно говорить о подборе коллектора под конкретное жилище. Но нужно помнить, что цифры продавцов, могут быть слишком оптимистичными, так как они будут стремиться продать максимальную площадь.

    Также много нюансов в системах подключения и размещения на крыше или на приусадебном участке. Подробней можно ознакомиться со схемами включения солнечных коллекторов

    Источник

    Калькулятор солнечных батарей для расчета выработки электрической энергии и окупаемости

    Данные по инсоляции предоставлены сервером NASA, история измерений ведется с 1984 года и является самой достоверной в мире информацией на сегодняшний день.

    Стиральная машина Шт × Вт × часов
    Стоимость солнечных батарей Срок окупаемости солнечных батарей Чистая прибыль за 20 лет

    Данный калькулятор предназначен для оценки выработки электрической энергии солнечными батареями и срока их окупаемости.

    Мы предоставляем и используем для расчетов данные солнечной инсоляции в любой точке земного шара. Точность местоположения составила 0,1 градус долготы и широты.

    Читайте также:  Как делается майнинг криптовалют

    Что бы воспользоваться нашим калькулятором укажите местоположение вашей солнечной электростанции на Яндекс карте вручную или введите название населенного пункта в поле поиска.

    Заполняем данные:

    1. Из выпадающего списка выберете модель и количество солнечных батарей которые вы планируете использовать или уже используете. Если в предложенном списке нет необходимых вам солнечных батарей, выберете «У меня другая солнечная батарея»
    2. Наш калькулятор автоматически рассчитает и покажет оптимальный угол наклона ( «Оптимум» ) для максимальной усредненной выработки в год, а так же оптимальный зимний и летний угол, которые будут полезны в случае использования вами поворотного механизма или эксплуатации электростанции в определенное время года ( например только летом, в этом случае вам стоит ориентироваться именно на угол «Лето»). Если по каким то причинам вы не хотите использовать предложенные системой оптимальные углы ( к примеру вы планируете монтировать батареи на кровлю своего дома, и угол предопределяется уже имеющейся конструкцией), есть возможность задать произвольный ( необходимый вам угол ). При изменении угла, данные по выработки будут пересчитаны автоматически.
    3. При выборе солнечных батарей крайне важно правильно рассчитать величину мощности энергопотребления. Для этого в калькуляторе вам предложено указать электрические приборы которыми вы будете пользоваться. Укажите их количество, мощность, а так же время работы в течении суток. Если в предложенном нами перечне нет необходимого вам прибора, вы можете воспользоваться пунктом «Другой прибор».

    Например для небольшого загородного дама выбираем:

    • Электролампа — 3шт х 50Вт х 6ч/сут итого 0,9кВт ч/сут,
    • Телевизор — 1шт х 150Вт х 4ч/сут итого 0,6кВт ч/сут,
    • Холодильник — 1шт х 200Вт х 6ч/сут итого 1,2кВт ч/сут,
    • Циркуляционный насос — 1шт х 50Вт х 21ч/сут итого 1,05 кВт ч/сут.

    Современные модели ЖК телевизоров потребляют 100-200Вт. Холодильник работает не постоянно. Основным потребителем энергии в нем является компрессор, который включается, если требуется холод. В среднем холодильник работает около 6 ч/сут. Циркуляционный насос используется практически круглосуточно. Все эти данные позволяют вычислить необходимую мощность для энергопитания используемых вами приборов.

    В нашем случае суммарное потребление в сутки составит 3,75 кВт ч/сут.

    Теперь давайте подберем необходимое количество солнечных батарей для Краснодарского края:

    Мы выбираем солнечные модули, мощность которых составляет 280Вт, далее выбираем угол наклона, предложенный в качестве оптимального программой, то есть 45 градусов.

    Далее нам следует выбрать необходимое количество батарей.

    Дойдя до трех модулей мы увидим, что сможем перекрыть энергопотребление наших приборов в период с апреля по сентябрь. Этого будет достаточно если эксплуатация дома происходит только в этот период ( то есть летнее время ). Для круглогодичной эксплуатации дома вам потребуется минимум 6 панелей мощностью 280 Вт каждая. При этом лучше будет взять 9 штук, чтобы не испытывать дефицита в пасмурные дни.

    График выработки очень удобен для визуальной оценки и выбора оптимального числа солнечных панелей. Под ним предлагается информативная сводная таблица, в которой представлены данные о выработке солнечной электростанции и планируемой нагрузке.

    Не забудьте заполнить форму и получить коммерческое предложение для вашей солнечной электростанции.

    Расчет солнечной электростанции при помощи нашего калькулятора является предварительным. Нужно принимать во внимание индивидуальность каждого объекта, и чтобы сформировать предложение «под ключ», учитывающее монтаж, техническое и экономическое обоснование, необходимо проконсультироваться с нашими специалистами. Сделать это можно по телефону или заказать выезд инженера к вам. По результатам разговора специалисты сделают предложение, которое будет отвечать вашим требованиям по максимуму. В комплексном предложении будет включена стоимость самой электростанции и ее профессиональный монтаж.

    Чтобы мы могли сделать предварительный расчет, отправьте нам свои данные при помощи специальной формы. Если какой-либо информации будет не хватать, наши специалисты свяжутся с вами для уточнения деталей.

    Источник

    Оцените статью