- Выгодно ли устанавливать солнечный коллектор, какой потребуется
- Конструкции солнечных коллекторов
- Сколько энергии дает солнце
- Для чего может понадобиться солнечный коллектор
- КПД и эффективность
- Экономическая целесообразность — большой или маленький коллектор нужен?
- Какая площадь солнечного коллектора потребуется
- Срок окупаемости солнечного коллектора
- Экономим электричество: расчеты производительности солнечного коллектора
- Расчет мощности солнечного коллектора
- Данные для расчетов:
- Рассчитываем площадь поглощения для одной трубки:
- Годовая экономия энергии составит:
- Примечания
- Итоги
Выгодно ли устанавливать солнечный коллектор, какой потребуется
В Европе крыши домов заставлены приспособлениями улавливающими и преобразующими солнечную энергию. У нас такое встретишь не часто. Почему? Есть ли целесообразность устанавливать в частном доме солнечный коллектор, и какой конструкции он должен быть…
Конструкции солнечных коллекторов
- Пластинчатые.
Поглотителем солнечной энергии является пластина покрытая чаще никелем. К ней прикреплены медные трубки, по которым движется теплоноситель. Другой вариант, — трубки выдавленные в самой нагревающейся пластине состоящей из двух половинок.
Пластина закрывается в утепленный короб, с одной стороны которого находится прочное самоочищающееся стекло.
- Трубчатый вакуумный
В основе — вакуумные трубки из стекла, покрытые снизу светоотражающим материалом, а сверху — металлизированным напылением, которое препятствует уходу отраженной энергии. Внутри стеклянной трубки размещается трубка
с движущимся теплоносителем. Ряды таких улавливателей солнечной энергии закрепляются к теплоизолированным сборным шинам с теплоносителем. Роль утеплителя в самой трубке играет вакуум.
Тепловые трубки.
Применяются сходные вакуумные трубки, но внутри них находятся медные трубки с легкоиспаряющейся жидкостью. Она преобразуется в пар солнечным теплом и сразу же конденсируется на теплообменнике в верхней части, отдавая энергию теплоносителю, и такой процесс идет постоянно.
Летний нагреватель.
Пластинчатый коллектор, но в самом дешевом исполнении — без стекла и теплоизоляции, с полимерным шлангом… Эффективно может использоваться только когда температура окружающего воздуха большая. Но нагрев воды намного более интенсивный, чем просто у бочки для летнего душа. Чаще по такой системе движется непосредственно вода, которая используется для душа и бассейна, без промежуточного бойлера.
Сколько энергии дает солнце
Количество солнечной энергия, которая приходится на единицу площади (метр квадратный), весьма различается на разных географических широтах. В северных регионах энергии слишком мало, чтобы речь шла о применении коллектора. Для эффективного и самоокупаемого применения солнечных коллекторов реально могут рассматриваться только южные регионы, южнее 52 параллели.
- В этих районах, в период минимального высоты солнца в декабре, можно получить максимум 80 Вт/м2
В июне, когда солнце находится в наивысшей точке, — 600 Вт/м2.
Важнейшая характеристика каждой модели коллектора — минимальная солнечная энергия, при которой от прибора можно получать тепло.
Известно, что варианты с вакуумными трубками начинают работать при 20 Вт/м2. А пластинчатые — в среднем от 80 Вт/м2.
Если сравнить имеющуюся солнечную энергию с характеристиками различных типов коллекторов, то можно заметить, что трубчатый будет способен работать круглый год. Зимой также, хоть отдача его и будет минимальна.
Пластинчатый же можно применять только в межсезонье и летом.
Для чего может понадобиться солнечный коллектор
Отопление необходимо в зимний период, а в это время отдача коллекторов весьма небольшая. Летом же отопление не нужно вовсе, и в это время коллектор способен генерировать максимум энергии.
Возникает не разрешимое противоречие — когда энергии нужно больше всего для отопления, ее просто нет.
Поэтому солнечный коллектор целесообразней всего использовать для приготовления горячей воды, которая понадобится всегда. Зимой коллектору намного больше будут помогать обычные источники энергии — от системы отопления или элеткронагрев.
Для ГВС коллектор намного выгоднее потому, что за период своей эксплуатации круглый сезон с него можно забрать и использовать больше энергии, чем если бы это делалось для отопления. А это значит, что прибор может оказаться выгодным, самоокупаемым.
КПД и эффективность
Коллектор наиболее выгодно использовать для подогрева воды, если он генерирует не более чем 70% требуемой энергии. Остальная энергия добирается за счет подогревом от других источников.
Почему солнечный коллектор не может сделать горячую воду, обычных 50 градусов?
КПД коллекторов быстро падает с ростом температуры теплоносителя. На графике видно, что пластинчатые приборы наиболее сильно зависят от температуры теплоносителя.
Пока теплоноситель холодный — КПД коллектора наибольший.
Отсюда, при проектировании систем нагрева отопления, следует учитывать довольно простой вывод — сначала нужно нагревать объем воды от солнечного коллектора. А затем догревать его до нужной температуры, например, электричеством.
Также из характеристик приборов известно:
- Трубчатые коллекторы имеют куда меньшую зависимость КПД от редуцируемой температуры. Могут использоваться круглый год, в том числе и для отопления.
Экономическая целесообразность — большой или маленький коллектор нужен?
Чем больше площадь солнечного коллектора, тем больше он поглощает энергии и тем больше будет температура теплоносителя. Но, согласно приведенным выше данным, с ростом температуры теплоносителя КПД приборов уменьшается.
Таким образом, слишком большой коллектор, при больших затратах, будет работать ненамного эффективней, чем маленький, — он просто не сможет поднять температуру выше из-за резкого падения КПД.
Как указывалось, для ГВС коллектор окажется экономически целесообразным, если будет давать не более 70 % необходимой энергии.
Но для радиаторного отопления, температура требуется обычно гораздо выше — до 80 градусов, причем зимой.
Здесь же коллектор окажется выгодным если будет генерировать не более 20-30% энергии.
Т.е. площадь коллектора не должна быть слишком большой, с целью добиться более высокой температуры, иначе прибор быстро выйдет за рамки окупаемости.
Какая площадь солнечного коллектора потребуется
Существуют сложные расчеты наиболее экономически целесообразных площадей солнечных коллекторов. Ниже приведены конечные рекомендации по подбору площади этих приборов, в реальных экономических условиях при низких ценах на углеводороды, по сравнению с Европой.
Количество энергии для ГВС полностью зависит от количества используемой воды. Поэтому данные приводятся из расчета на одного жителя.
- Для ГВС на одного человека целесообразная площадь солнечного коллектора находится в пределах 1,0 — 1,4 метра в зависимости от степени расхода воды.
Воспользовавшись подобными рекомендациями, или исходя из приведенных выше данных, можно говорить о подборе коллектора под конкретное жилище. Но нужно помнить, что цифры продавцов, могут быть слишком оптимистичными, так как они будут стремиться продать максимальную площадь.
Также много нюансов в системах подключения и размещения на крыше или на приусадебном участке. Подробней можно ознакомиться со схемами включения солнечных коллекторов
Источник
Срок окупаемости солнечного коллектора
Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте
Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки
Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники
Бесплатный архив статей
(200000 статей в Архиве)
Алфавитный указатель статей в книгах и журналах
Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта
Дизайн и поддержка:
Александр Кузнецов
Техническое обеспечение:
Михаил Булах
Программирование:
Данил Мончукин
Маркетинг:
Татьяна Анастасьева
При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua
сделано в Украине
Срок окупаемости солнечных коллекторов
Определить экономическую эффективность от применения солнечных коллекторов просто.
Для этого сначала нужно определить количества тепла, которое обеспечит солнечный коллектор за год (выработку), для чего Количество солнечной радиации на поверхность земли в этом месте умножить на Средний коэффициент полезного действия КПД солнечного коллектора.
Например, для Киева: Количество солнечной радиации 1000 кВтч/м2/год умножим на КПД наиболее эффективного солнечного коллектора-нагревателя 55%, получим выработку тепла солнечным коллектором 550 кВтч/м2/год. То есть один метр квадратный хорошего солнечного коллектора произведет 550 киловатт тепла за год.
С учетом сезонного изменения солнечной радиации: зимой будет произведено 14% или 77 кВт тепла, весной 29% или 160 кВт, летом 36% или 198 кВт, осенью 116 кВт. В декабре и январе выработка тепла минимальна, и составит в месяц 3,3% от общего производства тепла в год, или 18 кВт в месяц. Именно поэтому солнечные коллектора редко используют для отопления.
Для определения экономической эффективности — полученные 550 кВт тепла нужно сравнить с другим, альтернативным источником тепла. Например, 550 кВт тепла можно получить из электроэнергии, для чего понадобится 550 кВтч электроэнергии. Тариф для населения на электроэнергию в 2009 году в Украине составлял 0,18. 0,23 гривны/кВтч или 0,016. 0,02 евро/кВтч. Следовательно, для производства 550 кВт тепла нужно потратить 550х0,016. 0,02 = 8,8. 11 евро в год. Отсюда можно определить срок окупаемости теплового солнечного коллектора по сравнению с другим, альтернативным видом энергии. Срок службы теплового солнечного коллектора обычно до 10 лет.
Смотрите другие статьи раздела Альтернативные источники энергии.
Читайте и пишите полезные комментарии к этой статье.
Источник
Экономим электричество: расчеты производительности солнечного коллектора
В статье будет рассмотрен наиболее простой метод расчета количества энергии, которую можно получить путем применения солнечного коллектора. Статистика гласит, что в среднем в домашнем хозяйстве для использования горячей воды требуется от 2 до 4 кВт. Тепловой энергии в день на 1 человека.
Расчет мощности солнечного коллектора
В качестве примера будут приведены расчеты коллектора для Московской области.
Данные для расчетов:
- Место применения – Московская область Площадь поглощения – 2,35м2 (на основе таблицы о среднем количестве поступления солнечной энергии для регионов РФ)
- Величина инсоляция в Московской области – 1173,7кВт*час/м2
- КПД – от 67% до 80% (будут использованы минимальные показатели, актуальные для устаревших коллекторов, поэтому результаты будут слегка занижены).
- Угол наклона коллектора – в расчетах будут использованы оптимальные данные угла наклона.
карта инсоляции россии
Рассчитываем площадь поглощения для одной трубки:
15 трубок = 2,35 м. кв.; 1 трубка = 2,35 / 15 = 0,15 м. кв.
Теперь, когда известна площадь, которую поглощает одна трубка, определим количество трубок, составляющий 1 м. кв. поверхности коллектора: 1 / 0,15 = 6, 66. Иными словами, на один метр поверхности поглощения требуется 7 трубок коллектора.
Далее производим расчет тепловой мощности одной трубки коллектора. Это даст возможность рассчитать число трубок, необходимых для получения достаточной тепловой энергии на периоды в один день и один год:
Получаемая мощность в расчете на один день рассчитывается следующим образом: 0,15 (S поглощения 1 трубки) x 1173,7 (величина инсоляции в Московской области) x 0,67 (КПД солнечного коллектора) = 117,95 кВт*час/м. кв.
Для расчета годовой эффективности одной трубки в выбранном регионе в формуле для расчета дневной мощности следует использовать годовые инсоляционные данные. Иначе говоря, на место 1173, 7 необходимо поставить региональное значения инсоляции.
Мощность, вырабатываемая при помощи одной трубки в Москве, составляет от 117,95 (при использовании КПД в размере 67%) до 140кВт*час/м.кв. (при использовании КПД в размере 80%).
В среднем за сутки одна вакуумная трубка теплового коллектора вырабатывает 0,325кВт*час.
В наиболее солнечные месяцы (июнь, июль) одна трубка будет производить 0,545кВт*час.
Работа солнечного коллектора без света невозможна, по этой причине указанные показатели нужно использовать при расчете светового дня.
Сколько можно сэкономить электроэнергии в Москве при использовании одного м. кв. коллектора (как мы выяснили, это 7 вакуумных трубок)?
Годовая экономия энергии составит:
117,95 кВт*час/м2 * 7 = 825,6 кВт*час/м.кв.
Наибольшую мощность солнечный коллектор, соответственно, будет вырабатывать в летние месяцы. К примеру, в июне при использовании 1 м.кв. коллектора выработка электроэнергии составит около 115–117 кВт*час/м.кв.
Иначе говоря, энергетическая польза при использовании солнечного коллектора с 15-ю вакуумными трубками, где S=2,35 м.кв. за период с марта по август при суммарном значении инсоляции за весь указанный период в 874,2 кВт*час/м.кв. составит: 874,2 * 2,35 * 0,67 = 1376 кВт, то есть, практически 1,4 МегаВт. энергии, что в день составляет примерно 8 кВт.
Вспомним статистическую информацию, приведенную в первой части статьи – в домохозяйстве используется от 2 до 4 кВт энергии при потреблении горячей воды одним человеком ежедневно. Данные показатели подразумевают использование коллектора для нагрева горячей воды и, в частности, таких нужд как принятие душа, мытье посуды и т.п.
Расчеты солнечного коллектора, состоящего из 15 вакуумных трубок, позволяют сделать вывод о том, что в огородный сезон данного устройства будет достаточно для того чтобы обеспечить горячей водой семью, состоящую из трех человек. В результате, при учете всех неблагоприятных обстоятельств, таких как пасмурная или дождливая погода, на электроэнергии, используемой для подогрева воды, можно очень неплохо сэкономить.
Если же говорить об оптимальных условиях (солнечная погода и отсутствие дождей), то в данном случае выработка тепловой энергии солнечным коллектором позволит вообще избежать необходимости платить за электроэнергию.
Примечания
Если в таблице с расчетами солнечной энергии в различных регионах РФ нет точной информации о регионе, в котором Вы проживаете, то можно воспользоваться информацией, которая указана на инсоляционной карте России. Это позволит узнать приблизительное значение получаемой тепловой энергии в расчете на один квадратный метр.
Эмпирическим путем определено: чтобы рассчитать инсоляцию для наиболее оптимального угла наклона солнечного коллектора, следует данные, указанные для выбранной площади, умножить на коэффициент 1,2.
Определение угла наклона солнечных коллекторов
К примеру, в таблице указано, что для Москвы значение энергии, которое доступно на протяжении светового дня, составляет 2,63 кВт*ч/м.кв. Иначе говоря, доступная годовая энергия составляет 2,63 * 365 = 960 кВт*ч/м.кв.
Таким образом, при оптимальном наклоне площадки в Москве коллектор будет вырабатывать приблизительно 1174 кВт*ч/м.кв.
Конечно, данный метод расчета не является высоконаучным, однако, с другой стороны, полученные данные вполне можно использовать для определения необходимого количества вакуумных трубок на бытовом уровне.
Итоги
Солнечные коллекторы из года в год обретают все большую популярность среди владельцев дачных участков. Очевидно, что это говорит о том, что данное устройство позволяет существенно сэкономить электроэнергию при нагреве воды, что подробно описано и доказано в вышеизложенных расчетных примерах.
Данный агрегат является актуальным практически для любого региона России. Но прежде чем купить солнечный коллектор, лучше посчитать рентабельности и сроки окупаемости этого оборудования, что позволит убедиться в актуальности представленного инновационного оборудования для применения в Вашем регионе.
Источник