Солнечные коллекторы расчет окупаемости

Выгодно ли устанавливать солнечный коллектор, какой потребуется

В Европе крыши домов заставлены приспособлениями улавливающими и преобразующими солнечную энергию. У нас такое встретишь не часто. Почему? Есть ли целесообразность устанавливать в частном доме солнечный коллектор, и какой конструкции он должен быть…

Конструкции солнечных коллекторов

    Пластинчатые.
    Поглотителем солнечной энергии является пластина покрытая чаще никелем. К ней прикреплены медные трубки, по которым движется теплоноситель. Другой вариант, — трубки выдавленные в самой нагревающейся пластине состоящей из двух половинок.
    Пластина закрывается в утепленный короб, с одной стороны которого находится прочное самоочищающееся стекло.

    Трубчатый вакуумный
    В основе — вакуумные трубки из стекла, покрытые снизу светоотражающим материалом, а сверху — металлизированным напылением, которое препятствует уходу отраженной энергии. Внутри стеклянной трубки размещается трубка
    с движущимся теплоносителем. Ряды таких улавливателей солнечной энергии закрепляются к теплоизолированным сборным шинам с теплоносителем. Роль утеплителя в самой трубке играет вакуум.

Тепловые трубки.
Применяются сходные вакуумные трубки, но внутри них находятся медные трубки с легкоиспаряющейся жидкостью. Она преобразуется в пар солнечным теплом и сразу же конденсируется на теплообменнике в верхней части, отдавая энергию теплоносителю, и такой процесс идет постоянно.

Летний нагреватель.
Пластинчатый коллектор, но в самом дешевом исполнении — без стекла и теплоизоляции, с полимерным шлангом… Эффективно может использоваться только когда температура окружающего воздуха большая. Но нагрев воды намного более интенсивный, чем просто у бочки для летнего душа. Чаще по такой системе движется непосредственно вода, которая используется для душа и бассейна, без промежуточного бойлера.

Сколько энергии дает солнце

Количество солнечной энергия, которая приходится на единицу площади (метр квадратный), весьма различается на разных географических широтах. В северных регионах энергии слишком мало, чтобы речь шла о применении коллектора. Для эффективного и самоокупаемого применения солнечных коллекторов реально могут рассматриваться только южные регионы, южнее 52 параллели.

    В этих районах, в период минимального высоты солнца в декабре, можно получить максимум 80 Вт/м2

В июне, когда солнце находится в наивысшей точке, — 600 Вт/м2.

  • В апреле и сентябре — около 350 Вт/м2.
  • Важнейшая характеристика каждой модели коллектора — минимальная солнечная энергия, при которой от прибора можно получать тепло.

    Известно, что варианты с вакуумными трубками начинают работать при 20 Вт/м2. А пластинчатые — в среднем от 80 Вт/м2.

    Если сравнить имеющуюся солнечную энергию с характеристиками различных типов коллекторов, то можно заметить, что трубчатый будет способен работать круглый год. Зимой также, хоть отдача его и будет минимальна.
    Пластинчатый же можно применять только в межсезонье и летом.

    Для чего может понадобиться солнечный коллектор

    Отопление необходимо в зимний период, а в это время отдача коллекторов весьма небольшая. Летом же отопление не нужно вовсе, и в это время коллектор способен генерировать максимум энергии.

    Возникает не разрешимое противоречие — когда энергии нужно больше всего для отопления, ее просто нет.

    Поэтому солнечный коллектор целесообразней всего использовать для приготовления горячей воды, которая понадобится всегда. Зимой коллектору намного больше будут помогать обычные источники энергии — от системы отопления или элеткронагрев.

    Для ГВС коллектор намного выгоднее потому, что за период своей эксплуатации круглый сезон с него можно забрать и использовать больше энергии, чем если бы это делалось для отопления. А это значит, что прибор может оказаться выгодным, самоокупаемым.

    Читайте также:  Робот для скальпинга криптовалют

    КПД и эффективность

    Коллектор наиболее выгодно использовать для подогрева воды, если он генерирует не более чем 70% требуемой энергии. Остальная энергия добирается за счет подогревом от других источников.

    Почему солнечный коллектор не может сделать горячую воду, обычных 50 градусов?

    КПД коллекторов быстро падает с ростом температуры теплоносителя. На графике видно, что пластинчатые приборы наиболее сильно зависят от температуры теплоносителя.

    Пока теплоноситель холодный — КПД коллектора наибольший.

    Отсюда, при проектировании систем нагрева отопления, следует учитывать довольно простой вывод — сначала нужно нагревать объем воды от солнечного коллектора. А затем догревать его до нужной температуры, например, электричеством.

    Также из характеристик приборов известно:

      Трубчатые коллекторы имеют куда меньшую зависимость КПД от редуцируемой температуры. Могут использоваться круглый год, в том числе и для отопления.

  • Пластинчатые. Их эффективность намного больше летом, при прямом солнечном свете, они дают больше энергии чем трубчатые. Выгодней для приготовления ГВС. Зимой же, как указывалось, эффективность крайне низкая — не применимы.
  • Экономическая целесообразность — большой или маленький коллектор нужен?

    Чем больше площадь солнечного коллектора, тем больше он поглощает энергии и тем больше будет температура теплоносителя. Но, согласно приведенным выше данным, с ростом температуры теплоносителя КПД приборов уменьшается.

    Таким образом, слишком большой коллектор, при больших затратах, будет работать ненамного эффективней, чем маленький, — он просто не сможет поднять температуру выше из-за резкого падения КПД.

    Как указывалось, для ГВС коллектор окажется экономически целесообразным, если будет давать не более 70 % необходимой энергии.

    Но для радиаторного отопления, температура требуется обычно гораздо выше — до 80 градусов, причем зимой.
    Здесь же коллектор окажется выгодным если будет генерировать не более 20-30% энергии.
    Т.е. площадь коллектора не должна быть слишком большой, с целью добиться более высокой температуры, иначе прибор быстро выйдет за рамки окупаемости.

    Какая площадь солнечного коллектора потребуется

    Существуют сложные расчеты наиболее экономически целесообразных площадей солнечных коллекторов. Ниже приведены конечные рекомендации по подбору площади этих приборов, в реальных экономических условиях при низких ценах на углеводороды, по сравнению с Европой.

    Количество энергии для ГВС полностью зависит от количества используемой воды. Поэтому данные приводятся из расчета на одного жителя.

      Для ГВС на одного человека целесообразная площадь солнечного коллектора находится в пределах 1,0 — 1,4 метра в зависимости от степени расхода воды.

  • Для отопления расчет такой — площадь прибора не более 0,4 м2 на каждый квадратный метр площади дома. Соответственно, для небольшого дома в 100 кв, предел целесообразности — 40 м кв. прибора.
  • Воспользовавшись подобными рекомендациями, или исходя из приведенных выше данных, можно говорить о подборе коллектора под конкретное жилище. Но нужно помнить, что цифры продавцов, могут быть слишком оптимистичными, так как они будут стремиться продать максимальную площадь.

    Также много нюансов в системах подключения и размещения на крыше или на приусадебном участке. Подробней можно ознакомиться со схемами включения солнечных коллекторов

    Источник

    Расчет окупаемости

    Производительность и расчет окупаемости солнечного коллектора Я Solar
    Известно, что в солнечный день на каждый квадратный метр поверхности, установленный перпендикулярно солнечным лучам, падает от 600 до 1000 Ватт солнечной тепловой энергии (в зависимости от состояния атмосферы).Возьмем среднюю цифру в 900 Вт/м².
    Солнечный коллектор Я Solar имеет площадь в 2 м². Сторона, обращенная к солнцу, покрыта специальным светопоглощающим слоем и имеет практически 95%-е поглощение тепла. Обратная (теневая сторона) имеет утепление из 50 мм минеральной ваты. Подсчитаем потери тепла, происходящие на теневой стороне. Коэффициент теплопередачи минеральной ваты равен 0,035 Вт/м*°C. С учетом толщины и перепада температуры, например, в 50 градусов, получим потери равные 0,035/0,05 * 50 = 35 Вт. Примерно столько же будут излучать и торцы солнечного коллектора, трубы и пр. Из-за специального селективного покрытия и правильно подобранного расстояния между стеклом и абсорбером излучение тепла и конвекция воздуха будут минимальны. Итого примем теплопотери двухметрового солнечного коллектора равными 120 Вт.
    Средняя продолжительность активного светового дня составляет 6-8 часов в сутки. Летом это величина больше, зимой, соответственно, меньше. Поэтому в зимний период производительность солнечных коллекторов любой конструкции падает. Один солнечный коллектор Я Solar эффективно нагревает бойлер объемом 125 литров до 60-70°C. Это подтверждается многолетним опытом монтажа и эксплуатации как в летний, так и в зимний период.

    Читайте также:  Бесшумный корпус для майнинг фермы

    Расчет окупаемости солнечного коллектора Я Solar
    За один сезон коллектор Я Solar в Московском регионе нагреет воду, преобразуя солнечную энергию в количестве 1500 кВт при средних годовых значениях 2358кВт на 2 м². Из рыночной цены на электричество 4,00 рубля за кВт выходит, что за сезон экономится около 5700 рублей. Коллектор может нормально функционировать и эксплуатироваться минимум 15-20 лет. При стоимости коллектора Я Solar в нашей компании ООО «Новый полюс» 14700 рублей, коллектор окупится полностью за 3-4 года. При этом Вы получаете от 120-150 литров горячей воды в день удобным надёжным автономным способом, улучшая экологическую ситуацию и уменьшая нагрузку на сети.

    Расчет окупаемости солнечных батарей
    За один сезон солнечный коллектор Я Solar в Московском регионе нагреет воду, преобразуя солнечную энергию в количестве 1500 кВт при средних годовых значениях 2358кВт на 2 м². Из рыночной цены на электричество 3,80 рубля за кВт выходит, что за сезон экономится около 6000 рублей. Коллектор может нормально функционировать и эксплуатироваться минимум 15 лет. При стоимости коллектора Я Solar в нашей компании ООО «НОВЫЙ ПОЛЮС » 15900 рублей, солнечный коллектор полностью окупится за 3-4 года. При этом Вы получаете от 120-150 литров горячей воды в день от одного солнечного коллектора Я Solar удобным, надёжным и независимым способом, улучшая экологическую ситуацию и уменьшая нагрузку на энерго сети.

    Солнечные энергоресурсы России, солнечная инсоляция час/год.

    Месячные и годовые суммы солнечной радиации одного кв. м, кВт*ч/м².

    Астрахань,
    широта 46.4

    Источник

    Солнечный коллектор. Расчет окупаемости.

    Современное развитое общество трудно представить без использования альтернативных источников энергии. Япония, Австралия, США, Греция и другие, экономически развитые страны уже давно активно используют солнечную энергию при конструировании комбинированных котельных установок, а также для нагрева воды. На сегодняшний день использование в Европе солнечных коллекторов – это уже не призрачная перспектива, а реальное настоящее. Учитывая, нестабильность макроэкономической среды, стоимость традиционных видов топлива и электроэнергии будет возрастать. Следовательно, установка гелиосистемы — это надежные инвестиции в будущее.

    Популярным заблуждением является мнение о том, что солнечные водонагреватели реально использовать лишь в теплое время года, ведь достижения научно-технического прогресса позволяют использовать энергию Солнца даже зимой.

    Как показывает практика, благоприятные климатические условия в сфере использования альтернативных источников энергии играют менее важную роль, чем социально-экономические. Ярким тому примером можно назвать Кипр, где площадь установленных гелиосистем на душу населения является одной из наибольших в Европе. Данный успех объясняется принятым в государстве благоприятным законодательством. Грамотная законодательная база в поддержку широкого использования солнечной энергии существует также и в Израиле. Практически во всех новых домах Израиля и Кипра установлены солнечные водонагреватели.

    Солнечный коллектор или гелиосистема представляет собой конструкцию для сбора энергии Солнца, переносимой видимыми лучами света и ближним инфракрасным излучением. И даже в пасмурную погоду солнечный коллектор будет функционировать, так как поглощает солнечную энергию через облака, однако, при необходимости, система способна автоматически переключится на традиционные источники энергии.

    Существуют солнечные коллекторы разных конструкций, в зависимости от сферы их применения. Сегодня рынок предлагает множество моделей коллекторов. Условно существует несколько классификаций. Например, в зависимости от температуры, которую дают коллекторы, различают следующие их виды:

    — низкотемпературные — вырабатывают низкопотенциальное тепло, ниже 50 градусов Цельсия, применяются в основном для подогрева воды в бассейнах;

    — среднетемпературные коллекторы, производящие высоко- и среднепотенциальное тепло (60-80 С), используются для нагревания воды в жилых массивах;

    — высокотемпературные коллекторы — параболические тарелки, используемые в основном электрогенерирующими предприятиями, производящими электричество для электросетей.

    Наиболее распространенными типами солнечных коллекторов можно назвать вакуумные и плоскопанельные.

    Особенностью вакуумных коллекторов является использование вакуума в качестве достаточно эффективного теплоизолятора. Вакуум поддерживается между внешним стеклянным покрытием и теплопоглощающим слоем. Это минимизирует потери тепла и снижает зависимость КПД гелиосистемы от разности между температурой коллектора и температурой окружающей среды.

    Конструктивно вакуумные коллекторы могут быть:

    — трубчатыми, которые состоят из герметичных труб;

    — плоскими, вакуум в которых поддерживается при помощи насосов.

    Трубчатые вакуумные коллекторы являются более распространенными. Для них характерен так называемый «зеркальный эффект», т.е. минимизация зависимости теплоотдачи коллектора от высоты, на которой находится Солнце. Это содействует выравниванию тепловой мощности трубчатого коллектора на протяжении всего года. Возможно повышение температур теплоносителя до 250—300 °C при условии ограничения разбора тепла.

    Вакуумные солнечные коллекторы являются довольно интересным высокотехнологичным видом гелиосистем в техническом отношении.

    Плоскопанельные солнечные коллекторы — более распространенный вид коллекторов. Следует отметить, что пройдя ряд научно-технических усовершенствований, коллекторы данного типа, вероятно, практически достигли максимальных показателей в плане эффективности, срока эксплуатации и стоимости.

    В основе работы плоских солнечных коллекторов лежит парниковый эффект: солнечный свет, попадающий на поверхность панельного коллектора, полностью пропускается стеклом. В качестве верхнего прозрачного слоя используется обычное или закаленное стекло, также может использоваться поликарбонат, ударопрочное стекло, стекло с низким содержание железа. Передачу теплоты к теплоносителю осуществляют алюминиевые или медные элементы. Отвод теплоты осуществляется с помощью воды или раствора незамерзающей жидкости.

    Плоский солнечный коллектор — достаточно простое устройство. Покрытие, являющееся наиболее высокотехнологичным элементом во всей конструкции, должно поглощать большую часть энергии солнечных лучей, излучая при нагреве в инфракрасном спектре минимально возможную часть поглощенной энергии. При отсутствии разбора тепла плоские коллекторы нагревают воду до 190 °C.

    В настоящий момент, наиболее перспективными для России являются плоскопанельные солнечные коллекторы горячего водоснабжения, т.к. имеют четыре неоспоримых преимущества: всесезонность, простоту, надежность конструкции при относительно невысокой цене и, несомненно, срок службы — 50 лет в сравнении с 20-30 годами работы вакуумных. Необходимо также акцентировать внимание на том факте, что срок окупаемости вложенных в гелиосистему средств, зависит от цен на ископаемые энергоносители. В европейских странах обычно срок окупаемости составляет менее 10 лет, в США – 4. И, конечно же, основное преимущество использования солнечной энергии — экологическая чистота и неограниченность

    Источник

    Читайте также:  19990466 baltur рампа mm 65 m2 клапан
    Оцените статью