- Мини компьютер Nvidia Jetson Nano — 128 ядер Cuda, 472 GFLOPS за 99USD
- Встраиваемые системы машинного обучения на базе Nvidia Jetson
- Edge Computing
- Что такое Nvidia Jetson
- Jetson Nano
- Характеристики
- Видеорегистратор MIC-710IVA на базе Nvidia Jetson Nano
- Технические характеристики MIC-710IVA
- Jetson Tegra X2
- Характеристики
- Компактный промышленный компьютер MIC-720AI
- Jetson Xavier
- Высокопроизводительный промышленный компьютер MIC-730AI
- Заключение
- Jetson Nano: одноплатник для машинного обучения от Nvidia
Мини компьютер Nvidia Jetson Nano — 128 ядер Cuda, 472 GFLOPS за 99USD
В июне 2019 года компания Nvidia запустит в продажу свой мини компьютер по образу Raspberry Pi, но только с гораздо более высокой производительностью. Т.к. на борту кроме 4-х ядерного ARM Cortex A57 процессора будет еще GPU чип с 128 ядрами Cuda с расчетной производительностью в 472GFLOPS. Розничная цена на новинку составляет 99 USD, что почти в два раза дороже Raspberry Pi, но при этом открывает гораздо больше возможностей за счет использования GPU Nvidia. В основном это обработка изображений (кодирование, декодирование), искусственный интеллект и многие другие вещи в которых используются наработки компании Nvidia. В первую очередь Nvidia Jetson Nano предназначается для использования в робототехнике, видеорегистраторах, интернет вещей (IOT). Для нас же Jetson Nano интересен больше как законченное устройство для майнинга криптовалют, для которого не нужны материнские платы, процессоры и т.д. Т.е. в лице Nvidia Jetson Nano мы получаем устройство для майнинга криптовалют с помощью GPU, на подобие как это реализовано в Asic майнерах, где специализированными Asic чипами управляет мини компьютер Raspberry Pi.
Технические характеристики Nvidia Jetson Nano:
GPU | Архитектура NVIDIA Maxwell ™ со 128 ядрами NVIDIA CUDA ® | |
ЦПУ | Четырехъядерный процессор ARM ® Cortex ® -A57 MPCore | |
Объем памяти | 4 ГБ, 64-битный LPDDR4 | |
Место хранения | 16 ГБ eMMC 5.1 Flash | |
Кодирование видео | 4K @ 30 (H.264 / H.265) | |
Видео декодирование | 4K @ 60 (H.264 / H.265) | |
Камера | 12 полос (3×4 или 4×2) MIPI CSI-2 DPHY 1.1 (1,5 Гбит / с) | |
Связь | Гигабитный Ethernet | |
Дисплей | HDMI 2.0 или DP1.2 | eDP 1.4 | DSI (1 x2) 2 одновременно | |
UPHY | 1 x1 / 2/4 PCIE, 1x USB 3.0, 3x USB 2.0 | |
I / O | 1x SDIO / 2x SPI / 6x I2C / 2x I2S / GPIO | |
Размер | 69,6 мм х 45 мм | |
Разъем | 260-контактный разъем | |
Энергопотребление | 5-10Вт |
Nvidia Jetson Nano превосходит Raspberry Pi технически по всем параметрам и даже по габаритным размерам продукт от Nvidia заметно меньше, что крайне важно для робототехники.
Для майнинга производительности в 472GFLOPS конечно же будет недостаточно, что бы об этом говорить всерьез. Для примера у видеокарты GTX1060 производительность на уровне 4000GFLOPS, что почти в 10 раз больше. Но по такому же принципу можно изготовить миникомпьютер с GPU чипом например от RTX2060 или даже парочкой и упоковать это в один удобный корпус с блоком питания. Результат может получиться достаточно интересным для майнеров и возможно, что так оно и будет в недалеком будущем.
Так же существует Nvidia Jetson Nano Developer Kit за ту же цену в 99USD, которую уже можно приобрести.
Подробнее про Nvidia Jetson Nano можно прочитать на сайте Nvidia.
Подпишись на наш Telegram канал @cryptoage и Вконтакте, узнавай новости про криптовалюты первым.
Общайся с криптоэнтузиастами и майнерами в Telegram чате @CryptoChat
Источник
Встраиваемые системы машинного обучения на базе Nvidia Jetson
Аппаратные платформы для машинного обучения быстро развиваются и дешевеют. Модули Nvidia Jetson позволяют создавать эффективные и доступные решения для Edge Computing. Сегодня стало возможным уместить высокопроизводительную систему с 256 графическими ядрами Nvidia Cuda в компьютер, умещающийся на ладони.
В статье мы разберем что такое Edge Computing, расскажем о модулях Nvidia Jetson и покажем решения, которые нам удалось разработать на их основе.
Edge Computing
Концепция Edge Computing предполагает экономию ресурсов с помощью переноса вычислительных мощностей максимально близко к конечному оборудованию.
Рассмотрим один пример из реального проекта: заказчику требуется распознавать номер автомобиля, подъезжающего к воротам на удаленном объекте. Над воротами установлена цифровая камера высокого разрешения. Единственная связь с объектом — дорогой канал мобильного интернета. Раньше заказчику приходилось обрабатывать любое движение на видео и пересылать кадры с камеры на сервер для распознавания. Большая часть пересылаемых кадров содержала ложные срабатывания: движение людей, животных, погодных явлений. Это приводило к повышенному расходу мобильного трафика. С появлением доступных решений Еdge Сomputing стало возможным обрабатывать видеопоток локально на объекте, с помощью машинного обучения отличать подъезжающий автомобиль от других явлений и даже распознавать его номер. В результате пересылка данных на сервер по дорогому интернет-каналу сводилась только к отправке текстовой строки с номером автомобиля. Это позволило сократить расходы на мобильный трафик в разы.
Что такое Nvidia Jetson
Nvidia Jetson — семейство встраиваемых вычислительных модулей в формфакторе SoM (System On Module), ориентированное на создание компактных и энергоэффективных систем машинного обучения. Модули Nvidia Jetson это компактные платы, содержащие на борту все компоненты полноценного компьютера: процессор, видеоядра, оперативную память, USB-контроллеры и т.д. Они предназначены для встраивания в другие платы (carrier board), разработанные под конкретные задачи.
Использования SoM значительно упрощает разработку встраиваемых систем, так как производителю специфического решения требуется разработать только плату с обвязкой (carrier board) для периферии и вставить готовый вычислительный модуль. Это позволяет снизить затраты на разработку сложных материнских плат и сфокусироваться на качестве сборки и дополнительных опциях. Также это проще для разработчиков, так как они могут использовать тот же самый модуль SoM в виде Evaluation Kit, пока финальное устройство еще не готово. В итоге разработчик ПО получает предсказуемое аппаратное окружение и может быть уверен, что при переносе программ на финальное устройство он получит ровно такую же производительность. Это особенно важно при разработке систем машинного обучения, когда результат сильно зависит от характеристик железа.
Jetson Nano
Nvidia Jetson Nano — младший модуль линейки Jetson, предназначенный для встраивания в конечные устройства вроде камер, видеорегистраторов, роботов, интерактивных терминалов и потребительской электроники. Выполнен в формфакторе SO-DIMM как платы оперативной памяти для ноутбуков.
Характеристики
Процессор: четырёхъядерный ARM Cortex-A57 MPCore @ 1.4 GHz
Графический процессор: Maxwell со 128 ядрами CUDA
Аппаратный кодек видео: кодирование 4K@30fps (кодек H.264/H.265) и декодирование 4K@60fps
Видеовыход: HDMI 2.0 или DP1.2 | eDP 1.4 | DSI (1×2), два одновременно
RAM: 4 ГБ LPDDR4 64-бит; 25,6 ГБ/с
Флэш-память: 16 ГБ eMMC (для операционной системы)
Интерфейсы: 1×1/2/4 PCIE, 1×USB 3.0, 3×USB 2.0, Gigabit Ethernet
Ввод-вывод: 1×SDIO / 2×SPI / 6×I2C / 2×I2S / пины GPIO
Операционные системы: Linux
Размеры: 69,5×45 мм
Подключение: 260-пиновый коннектор SO-DIMM DDR4
Благодаря низкой стоимости модуля Jetson Nano, множество разработчиков успели попробовать его в работе. Даже на хабре уже есть несколько статей о применении его для машинного зрения и распознавания образов: Демо Jetson Nano — распознавание котиков. Это наиболее доступный и популярный модуль для разворачивания систем машинного обучения.
Видеорегистратор MIC-710IVA на базе Nvidia Jetson Nano
Мы представляем решение для интеллектуального видеонаблюдения «все в одном» — цифровой 8-канальный видеорегистратор MIC-710IVA на базе Nvidia Jetson Nano. Он позволяет интегрировать системы машинного зрения без построения сложного комплекса из нескольких устройств.
- Цифровой видеорегистратор с системой хранения данных
- Вычислительный модуль из 128 ядер CUDA для обработки видео в реальном времени
- 8-портовый PoE коммутатор для подключения камер напрямую
- Блок цифровых входов/выходов для управления реле, герконами, сигнализациями и т.д.
Машинное обучение быстро стало трендом в видеонаблюдении. Оно позволяет автоматизировать то, что раньше приходилось делать человеку, например, выявлять аномальное поведение людей, автомобилей, природных явлений, обнаруживать аварии, анализировать загруженность объектов и т.д. Больше не нужно полагаться на внимательность диспетчера. Такие системы востребованы в ритейле, охранных комплексах, транспортных узлах.
Технические характеристики MIC-710IVA
- Построен на базе NVIDIA Jetson Nano
- 8 портов PoE для видеокамер
- Возможность установки двух 3.5″ HDD
- ОС Linux
- Низкое энергопотребление
- Поддержка видео-кодеков H.264 / H.265
- Интерфейс RS-485 и 8-битные цифровые входы/выходы
Задняя панель видеорегистратора MIC-710IVA
Видеорегистратор MIC-710IVA позволяет выполнять первичную обработку видеоданных в реальном времени, без необходимости транслировать весь поток в удаленные центры обработки данных. Это позволяет снизить нагрузку на сеть и избавиться от необходимости передавать чувствительные данные третьим лицам.
Jetson Tegra X2
Jetson Tegra — более старший модуль в линейке, почти втрое производительнее чем Jetson Nano. Выполнен в формфакторе мезонинной платы, то есть вставляется в другую плату через специальный 400-контактный разъем. Существует также версия TX2i с расширенным диапазоном рабочих температур.
Характеристики
Процессор: Четырёхъядерный ARM Cortex-A57 MPCore + Двухъядерный NVIDIA Denver 2 64-Bit CPU
Графический процессор: 256 ядер NVIDIA Pascal + 256 ядер NVIDIA CUDA
RAM: 8 или 4 ГБ LPDDR4 64-бит; 59.7 ГБ/с
Подключение: 400-контактный разъем
Данный модуль ориентирован на профессиональных разработчиков и стоит в четыре раза дороже Jetson Nano. Модуль Jetson TX2 предназначен для более производительных вычислений. Применяется в робототехнике, промышленности, летательных аппаратах и т.д.
Компактный промышленный компьютер MIC-720AI
MIC-720AI построен на базе платформы Jetson TX2 с полностью пассивным охлаждением и предназначен для установки в промышленные системы машинного зрения, на производстве и в подвижных объектах. Безвентиляторная конструкция обеспечивает полную бесшумность в работе и позволяет использовать компьютер в пыльных помещениях без необходимости обслуживания.
Наличие порта PoE позволяет подключить Ethernet-камеру напрямую к компьютеру без необходимости использовать инжекторы и промежуточное оборудование.
Технические характеристики MIC-720AI
- Основан на Nvidia Tegra X2
- Полностью пассивное охлаждение
- Два USB 3.0, один USB 2.0 OTG/Host
- Ethernet-порт c поддержкой 802.3af PoE
- ОС Linux
- Широкий диапазон рабочих температур
На задней панели компьютера находится USB 2.0 порт с возможностью переключения режимов работы между OTG и Host. В режиме OTG компьютер можно подключить как USB-накопитель к другому компьютеру для передачи данных и обновления ПО.
MIC-720AI подходит для построения систем контроля производства и высокоточного анализа видеопотока.
Jetson Xavier
Jetson Xavier — самый производительный модуль в линейке. Предназначен для установки в автомобили, летательные аппараты и другие системы с большим потоком видеоданных. Выполнен в формфакторе мезонинной платы. Jetson Xavier в 20 раз производительнее Jetson TX2 и имеет на борту 512 ядер Nvidia Volta. При этом модуль потребляет до 30W.
Высокопроизводительный промышленный компьютер MIC-730AI
Компьютер MIC-730AI построен на базе Jetson Xavier и предназначен для установки в высокопроизводительные системы производства, где требуется обработка большого объема данных. Также как и в модели MIC-720AI, система охлаждения выполнена полностью на пассивных компонентах и не использует вентиляторы. Конфигурация компьютера может быть расширена с помощью подключения двух PCIe x8/x4 плат через модуль расширения iModule MIC-75M20.
Технические характеристики MIC-730AI
Основан на Nvidia Xavier
Пассивное охлаждение
Два USB 3.0, два USB 2.0
2 Ethernet-порта
Возможность подключения двух PCIe-плат (через модуль iModule MIC-75M20)
Возможность подключения 1х MiniPCIe и 1x M.2 (PCIex4 NVMe)
Два последовательных порта RS-485/232
Предустановленная ОС Linux Ubuntu 18.04
Низкое энергопотребление
Заключение
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Источник
Jetson Nano: одноплатник для машинного обучения от Nvidia
Вчера компания Nvidia анонсировала Jetson Nano: одноплатный компьютер для вычислений в области ИИ. Маленький компьютер с поддержкой библиотек CUDA-X AI выдаёт 472 гигафлопса для запуска современных рабочих нагрузок ИИ, потребляя при этом всего лишь 5 Вт.
Одноплатник представлен на конференции GPU Technology Conference, а презентацию провёл основатель и генеральный директор Nvidia Дженсен Хуанг.
- Графический процессор: Nvidia на архитектуре Maxwell со 128 ядрами CUDA
- Процессор: четырёхъядерный ARM Cortex-A57 MPCore
- Видео: 4K на 30 кадрах в секунду (формат H.264/H.265) и 4K на 60 кадрах в секунду (формат H.264/H.265) для кодирования и декодирования, соответственно
- Видеовыход: HDMI 2.0 или DP1.2 | eDP 1.4 | DSI (1×2), два одновременно
- Оперативная память: 4 ГБ LPDDR4 64-бит; 25,6 ГБ/с
- Флэш-память: 16 ГБ eMMC
- Камера: 12 линий (3×4 или 4×2) MIPI CSI-2 DPHY 1.1 (1,5 Гбит/с), 12x (модуль) и 1x (набор разработчика)
- Разъёмы: 1×1/2/4 PCIE, 1×USB 3.0, 3×USB 2.0
- Ввод-вывод: 1×SDIO / 2×SPI / 6×I2C / 2×I2S / пины GPIO
- Сеть: Gigabit Ethernet
- Поддержка ОС: Linux для Tegra
- Размер модуля: 69,5×45 мм
- Размер девкита: 100×80 мм
- Подключение: 260-пиновый коннектор
Jetson Nano поставляется в двух версиях:
- девкит для разработчиков, производителей и энтузиастов за $99;
- готовый модуль для компаний, желающих создать системы для массового рынка, за $129.
Jetson Nano поддерживает сенсоры высокого разрешения, может параллельно обрабатывать информацию с множества датчиков и запускать несколько нейросетей одновременно. Он также поддерживает множество популярных фреймворков ИИ, что позволяет разработчикам интегрировать свои любимые модели и фреймворки.
По мнению Nvidia, дешёвый одноплатник «идеально подходит для предприятий, стартапов и исследователей», которые раньше не могли себе позволить купить более дорогие платы. Таким образом, платформа Jetson значительно расширяет свою аудиторию, а ускоритель ИИ фактически становится чуть ли не товаром народного потребления. По крайней мере, этот девкит может купить любой мейкер. Как говорит Nvidia, плата «приносит мощь современного ИИ на недорогую платформу, стимулируя новую волну инноваций от производителей, изобретателей, разработчиков и студентов. Они могут создавать проекты ИИ, которые ранее были невозможны, и выводить существующие проекты на новый уровень — мобильные роботы и дроны, цифровые помощники, автоматизированные приборы и многое другое».
Комплект поставляется с поддержкой полноценного десктопного Linux, совместим со многими популярными периферийными устройствами и аксессуарами. Также доступна справочная литература, которая поможет во всём этом разобраться. В крайнем случае, задать вопрос можно на форуме разработчиков Jetson, где коллеги ответят на технические вопросы.
Это уже не первый продукт Nvidia в семействе Jetson, которое также включает мощную систему Jetson AGX Xavier для автономных машин и Jetson TX2 для встроенного применения (AI at the Edge).
Jetson AGX Xavier
Для сравнения, Jetson AGX Xavier работает на 512-ядерном Volta GPU с тензорными ядрами, тут есть акселератор глубокого обучения, 16 ГБ памяти, специальный акселератор компьютерного зрения (7-Way VLIW Vision Processor), возможность кодировать видео с разрешением до 8К и декодировать одновременно до 12-ти потоков 4К. Многое из этого отсутствует в одноплатнике Jetson Nano. Но зато тот гораздо меньше по размеру и дешевле, чем Jetson AGX Xavier: всего 69,6×45 мм против 87×100 мм и цена $99 против $1299. Как говорится, почувствуйте разницу.
Третий представитель семейства Jetson TX2 поставляется в трёх версиях: TX2 (8GB), TX2 4GB и TX2i. Они отличаются также по объёму флэш-памяти (16-32 ГБ) и наличию встроенного Wi-Fi, который есть только в TX2 (8GB).
В Jetson TX2 работает GPU на архитектуре Pascal с 256 ядрами Nvidia CUDA. По другим характеристикам и размеру (87×50 мм) плата Jetson TX2 похожа на Jetson Nano, но стоит значительно дороже: в районе $600 (девкит). Так что Jetson Nano дешевле сотни долларов — это действительно нечто особенное для Nvidia.
Источник