Модель оценки доходности финансовых активов сарм у шарпа

САРМ. Модель ценообразования активов (Capital Asset Pricing Model)

Распространенным подходом к оценке уровня премий за акционерный риск, применяемым на практике основными инвестбанками и аудиторами, является модель САРМ (Capital Asset Pricing Model), другое название – модель ценообразования на рынке капитальных финансовых активов, изредка в учебной литературе встречается аббревиатура МОДА, то есть «модель оценки долгосрочных активов».

Модель CAPM, чаще всего, применяется для объяснения динамики курсов ценных бумаг и функционирования механизма, посредством которого инвесторы могли бы оценивать влияние инвестиций в предполагаемые ценные бумаги на риск и доходность их портфеля.

Концепция этой модели была разработана в 1950-х гг. в США Гарри Марковицем [1], дальнейшее развитие модель получила в работах Jack Treynor (1961-1962гг.), William Sharpe (1964г.), John Lintner (1965г.) и Jan Mossin (1966г.).

Суть САРМ модели заключается в следующем: предполагая существование высоколиквидного эффективного рынка финансовых активов, можно прийти к выводу о том, что величина требуемой отдачи на средства, вложенные в какой-либо актив, определяется не столько специфическим риском, присущим конкретному активу, сколько общим уровнем риска, характерным для фондового рынка.[2]

Такой вывод может показаться противоречащим здравому смыслу – инвестору должен быть компенсирован тот риск, который он принимает, вкладывая ресурсы в капитал компании. Логика модели базируется на том, что инвестор диверсифицирует свои вложения и, хотя для разных вложений, входящих в портфель активов инвестора, характерен разный профиль риска, зачастую потери от одного актива могут быть компенсированы доходами по другому активу, что существенным образом снижает реальный уровень риска, принимаемого на себя инвестором.

Математически формула определения ожидаемой ставки доходности на долгосрочный актив имеет следующий вид:

где,
Rf — доходность безрисковых активов, под которой, как правило, понимают доходность государственных ценных бумаг;
Rm — ожидаемая средняя норма прибыли рыночного портфеля;
(Rm-Rf) — премия за риск вложения в акции (в ряде учебных пособий премия за рыночный риск принимается равной 5%);
β — коэффициент, характеризующий чувствительность оцениваемой ценной бумаги к изменениям рыночной доходности (рассчитывается по статистическим данным и выражает вариабельность доходности ценной бумаги по отношению к среднерыночной доходности).

Смысл модели CAPM заключается в том, что требуемая (рыночная) доходность собственного капитала есть безрисковая ставка доходности, увеличенная на риски, соответствующие акционерному капиталу.

Применительно к российской практике можно говорить о двух подходах для расчета по модели CAPM для компаний из развивающихся рынков.

Подходы к расчету модели CAPM:

Страновой риск корректируется на β-коэффициент

Страновой риск не корректируется на β-коэффициент

Если страновой риск корректируется на β-коэффициент, формула для CAPM принимает следующий вид:

В случае, когда страновой риск не корректируется на β-коэффициент, формула для CAPM принимает следующий вид:

Для непубличных компаний вышеприведенные формулы CAPM для расчета ставки дисконтирования могут дополняться показателями S1 и S2 — премиями за малый размер и специфические риски соответственно.

где,
S1 — дополнительная норма дохода за риск инвестирования в конкретную компанию;
S2 — дополнительная норма дохода за риск инвестирования в малую компанию.

Говоря о безрисковой ставке, следует пояснить, что различают несколько безрисковых ставок: глобальную безрисковую ставку и локальную безрисковую ставку.

Глобальная безрисковая ставка – ставка по государственным облигациям США, Англии, Германии и Швейцарии. (Информацию по американским государственным облигациям можно найти тут). В качестве глобальной безрисковой ставки доходности правильнее выбирать ставку доходности по 10-летним американским государственным облигациям.

Читайте также:  Метод доходность облигаций плюс премия за риск при оценке капитала

Локальная безрисковая ставка – ставка по российским государственным облигациям номинированным в рублях (данные о ставке можно посмотреть здесь).

Среднерыночная доходность (Rm) представляет собой доходность рыночного портфеля. В качестве данного показателя берут, например, среднюю доходность по акциям, включенным в рыночный портфель, используемый для расчета какого-либо общеизвестного индекса (Индекс ММВБ, Nikkei 225 и т.п.), данные значения легко можно найти в открытом доступе.

Безрисковая доходность (Rf) представляет собой, ожидаемый среднегодовой темп прироста экономики в долгосрочной перспективе, но с поправкой на изменение краткосрочной ликвидности и инфляцию. Единого мнения в отношении значения показателя нет. Так, американские финансовые аналитики полагают, что в качестве доходности безрисковых активов следует брать доходность по казначейским обязательствам, но вот какие обязательства использовать долго- или краткосрочные, – единства нет.

Разницу между среднерыночной нормой доходности акций и безрисковой ставкой (Rм — Rf) называют премией за риск вложения в акции (equity risk premium, ERP).

Размер премии за риск инвестирования в акционерный капитал, ERP. В качестве ERP можно взять готовую цифру из верифицированного источника аналитических данных. К примеру для России, на 01.01.2015 ERP составлял 13,72%, а для западных компаний обычно эта премия варьируется в диапазоне 3,5% — 6%.

Бета-коэффициент характеризует чувствительность оцениваемой ценной бумаги к изменениям рыночной доходности (рассчитывается по статистическим данным и выражает вариабельность доходности ценной бумаги по отношению к среднерыночной доходности – доходности того или иного фондового индекса).

β-коэффициент выражает меру систематического риска для акций компании. Величина коэффициента определяется на основе анализа ретроспективных данных соответствующими статистическими службами фирм, специализирующихся на рынке информационно-аналитических услуг, инвестиционными и консалтинговыми компаниями и публикуется в финансовых справочниках и периодических изданиях, анализирующих фондовые рынки. Общий алгоритм расчета показателя в следующей таблице:

Общий алгоритм расчета показателя

№ п/п Локальный β (долл.) Локальный β (руб.)
1 Стандартное отклонение доходности RTSI Стандартное отклонение доходности ММВБ
2 Стандартное отклонение доходности конкретного эмитента Стандартное отклонение доходности конкретного эмитента
3 Корреляция доходностей RTSI и акций конкретного эмитента Корреляция доходностей ММВБ и акций конкретного эмитента
4 Бета-коэффициент = стр. 2 x стр. 3 / стр. 1

Отметим, информацию о бета-коэффициенте публичных компаний можно взять в виде готовой цифры из открытых источников, к примеру, для акций ГМК «Норильский никель» на 25.12.15 значение коэффициента равно 0,88.

Если необходимо рассчитать значение бета-коэффициента для непубличной компании, то можно воспользоваться формулой Хамады [6]:

Рассмотрим пример расчета бета-коэффициента для непубличной компании, занимающейся производством пищевых продуктов (скачать).

Известны достаточно простые алгоритмы, позволяющие найти приблизительное значение бета-коэффициента для данной ценной бумаги. Пусть Kij — доходность акций i-й компании в j-м году, a Kmj — доходность на рынке в среднем (j = 1, 2, . n) за все анализируемые периоды. Если к рынку применима модель САРМ, то, как следует из модели, β-коэффициент представляет собой коэффициент эластичности, а его значение можно рассчитать как отношение приращения доходности акций i-й компании (ΔKij) к приращению среднерыночной доходности (ΔKmj):

Алгоритм, задаваемый формулой, весьма приблизителен, поскольку приращения можно считать различными способами. Достаточно часто используется следующий вариант расчета β:

  1. определяются средние (например, по годам) значения доходности акций данной компании и по рынку в целом;
  2. строится уравнение линейной регрессии, отражающее зависимость средней доходности акций данной компании от доходности на рынке в среднем;
  3. коэффициент регрессии (т.е. коэффициент при параметре Km) и будет бета-коэффициентом.
Читайте также:  Новинки асиков для майнинга 2021

Так как данные для расчета CAPM базируются на процентных ставках номинированных в долларах США, то при использовании рублевых денежных потоков необходимо скорректировать полученную величину ставки дисконтирования по следующей формуле:

где,
Rrur — ставка дисконтирования, номинированная в рублях;
Rusd — ставка дисконтирования, номинированная в долларах США;
Brur — доходность по рублевым государственным облигациям России;
Busd — доходность по еврооблигациям России, номинированным в долларах США.[4]

Одним из основных преимуществ в применении модели является то что, модель CAРM позволяет учесть влияние внешних факторов, не зависящих от хода реализации проекта, – страновые и политические риски, ставки доходности (без рисковые, отраслевые и среднерыночные). При этом, правда, следует учитывать и ее недостатки, к которым можно отнести:

  1. Имеет прямое отношение только к компаниям, которые являются открытыми акционерными обществами и, следовательно, их акциями торгуют на фондовых рынках.
  2. Вызывает затруднения при определении, какие из вложений можно считать без рисковыми, применим только к компаниям, которые располагают достаточной статистикой для расчета своего коэффициента бета или имеют возможность найти компанию-аналог, чей коэффициент бета мог бы использоваться в расчетах.

При использовании в модели информации зарубежных фондовых рынков в ставке дисконта необходимо учитывать дополнительный риск, связанный с инвестированием средств в Россию (страновой риск). Уровень риска инвестирования в конкретную страну определяется крупнейшими информационно-аналитическими и рейтинговыми агентствами.

Capital Asset Pricing Model, САРМ – центральная концепция современной финансовой экономики. Эта модель дает представление о том, какое должно быть соотношение между риском вложения в актив и доходностью этого вложения. Эта формула нашла широкое применение в теории современного инвестиционного анализа в самых различных его областях: оценки прибыльности проектов, портфельных инвестиций, оценки предприятий.

Источник

Модель оценки доходности финансовых активов САРМ

Модель описывает зависимость рыночного риска и доходности финансовых активов. Теория САРМ (Capital Assets Pricing Model)была разработана Уильямом Ф. Шарпом и опубликована им в 1964 году. Он получил нобелевскую премию по экономике за исследования в области ценообразования финансовых активов.

Модель основана на предпосылках о существовании идеальных рынков капитала.

1. Главная цель инвестора – максимизация прироста своего достояния.

2. Все инвесторы могут давать и брать ссуды неограниченного размера по безрисковой процентной ставке.

3. Ожидания инвесторов относительно изменений показателей акций одинаковы.

4. Все активы абсолютно делимы и совершенно ликвидны.

5. Не существует трансакционных затрат.

6. Не учитываются налоги.

7. Инвесторы предполагают, что их деятельность не влияет на уровень цен.

8. Количество финансовых активов заранее определено и фиксировано.

Оптимальный выбор инвестора определяется как пересечение кривых безразличия, отражающих предпочтения данного инвестора, и совокупности эффективных портфелей, которые могут быть сформированы на данном рынке. Предполагалось, что все активы, входящие в оптимальный портфель – рисковые. Тем не менее, можно выделить безрисковые финансовые активы – те, по которым нет риска дефолта, такими активами принято считать государственные ценные бумаги (в условиях стабильности государственного финансового рынка и государственных финансов в целом). Если инвестор включит в портфель безрисковые активы это приведет к изменению структуры портфеля и именит его окончательный инвестиционный выбор, выражающийся в структуре оптимального портфеля.

Читайте также:  Как увеличить скорость биткоина

Ллиния рынка капитала – CML –это касательная от точки Krf, характеризующей безрисковый актив (его доходность Krf, риск s = 0) к эффективному множеству портфелей.

Определим доходность и риск оптимального портфеля ценных бумаг (M), сформированного из безрискового актива и совокупности рисковых активов.

Доходность портфеля Кр можно определить по формуле:

Krf — доходность безрискового актива,

х – доля безрискового актива в портфеле,

KM — доходность портфеля, состоящего из рисковых активов.

Уровень риска sр портфеля может быть определен, как его СКО, для расчетов можно воспользоваться формулой:

sр – СКО доходности портфеля,

sм – СКО доходности портфеля, состоящего только из рисковых активов,

х – доля безрисковых активов в портфеле.

Степень наклона (крутизны) CML показывает, какую доходность могут получить инвесторы в зависимости от принятых рисков, ее можно рассчитать следующим образом: (KМ — Krf )/sм. Эта величина отражает рыночную цену полностью диверсифицированных портфелей.

Рисковость ценной бумаги определяется ее бета-коэффициентом. Этот коэффициент характеризует изменчивость доходности конкретной ценной бумаги относительно доходности рынка ценных бумаг.

Предполагается, что некоторая «средняя» акция имеет b-коэффициент равный 1. Если изменчивость доходности данной ценной бумаги меньше, чем у «средней» акции, то ее b-коэффициент меньше единицы.

Связь между риском и доходностью конкретной ценной бумаги называют уравнением линии рынка ценных бумаг – SML. Оно выглядит следующим образом: Ki = Krf + (KМ — Krf )*bi

Ki – требуемая доходность i-ой акции,

Krf — доходность безрискового актива,

KM — доходность рыночного портфеля,

bi — b-коэффициент i-ой акции.

(KМ — Krf )-рыночная премия за риск или цена риска для средней акции.

На требуемый уровень доходности влияет инфляция, но она одинаково сказывается на всех ставках доходности. В каждой из этих номинальных ставок можно выделить две составляющих:

— реальный уровень доходности,

Крутизна линии рынка ценных бумаг отражает отношение инвесторов к риску: чем круче наклон, тем меньше инвесторы склонны к риску.

Рассмотрим основные различия CML и SML:

1. Для линии рынка капитала риск характеризуется СКО – показатель общего риска. Для линии рынка ценных бумаг показателем риска является бета-коэффициент – показатель специфиического риска.

2. При равновесии только полностью диверсифицированные портфели находятся на линии рынка капитала, а отдельные ценные бумаги лежат под ней. Все ценные бумаги и все портфели находятся на линии рынка ценных бумаг.

Как уже было сказано, предполагается, что некоторая «средняя» акция имеет b-коэффициент равный 1. Характеристики этой «средней» акции будут меняться в зависимости от изменения рыночной ситуации. При изменении ситуации на рынке показатели «средней» акции меняются в том же направлении и на ту же величину. b-коэффициент большинства рыночных акций меняется от 0,75 до 1,5.

Например, b-коэффициент “Procter&Gambel” равен 1, “Harley-Davidson” – 1,6.

b-коэффициент портфеля ценных бумаг рассчитывается по формуле средней арифметической взвешенной.:

, где

хi – доля i-ой ценной бумаги в портфеле,

Если в портфель добавляются ценные бумаги, имеющие b>1, то уровень риска портфеля повышается, и, наоборот, если добавляются ценные бумаги, имеющие b

Источник

Оцените статью