Ковариация доходности ценных бумаг это

Ковариация | Covariance

Математически ковариация (англ. Covariance) представляет собой меру линейной зависимости двух случайных величин. В портфельной теории этот показатель используется для определения зависимости между доходностью определенной ценной бумаги и доходностью портфеля ценных бумаг. Чтобы рассчитать ковариацию доходности необходимо воспользоваться следующей формулой:

где ki – доходность ценной бумаги в i-ом периоде;

— ожидаемая (средняя) доходность ценной бумаги;

pi – доходность портфеля в i-ом периоде;

— ожидаемая (средняя) доходность портфеля;

n – количество наблюдений.

Следует отметить, что в знаменатель формулы подставляется (n-1), если ковариация рассчитывается на основании выборки из генеральной совокупности наблюдений. Если в расчетах учитывается вся генеральная совокупность, то в знаменатель подставляется n.

Пример. В таблице представлена динамика доходность акций Компании А и Компании Б, а также динамика доходности портфеля ценных бумаг.

Чтобы воспользоваться вышеприведенной формулой для расчета ковариации доходности каждой из акций с портфелем необходимо рассчитать среднюю доходность, которая составит:

  • для акций Компании А 4,986%;
  • для акций Компании Б 5,031%;
  • для портфеля 3,201%.

Таким образом, ковариация акций Компании А с портфелем составит -0,313, а акций Компании Б 0,242.

Cov (kA, kp) = ((5,93-4,986)(2,27-3,201) + (5,85-4,986)(2,39-3,201) + (5,21-4,986)(3,47-3,201) + (5,37-4,986)(3,21-3,201) + (4,99-4,986)(2,95-3,201) + (4,87-4,986)(2,97-3,201) + (4,70-4,986)(3,32-3,201) + (4,75-4,986)(3,65-3,201) + (4,33-4,986)(3,97-3,201) + (3,86-4,986)(3,81-3,201))/(10-1) = -0,313

Cov (kБ, kp) = ((4,25-5,031)(2,27-3,201) + (4,47-5,031)(2,39-3,201) + (4,68-5,031)(3,47-3,201) + (4,71-5,031)(3,21-3,201) + (4,77-5,031)(2,95-3,201) + (5,25-5,031)(2,97-3,201) + (5,45-5,031)(3,32-3,201) + (5,33-5,031)(3,65-3,201) + (5,55-5,031)(3,97-3,201) + (5,85-5,031)(3,81-3,201))/(10-1) = 0,242

Аналогичные расчеты можно произвести в Microsoft Excel при помощи функции «КОВАРИАЦИЯ.В» для выборки из генеральной совокупности или функции «КОВАРИАЦИЯ.Г» для всей генеральной совокупности.

Интерпретация ковариации

Значение коэффициента ковариации может быть как отрицательным, так и положительным. Его отрицательное значение говорит о том, что доходность ценной бумаги и доходность портфеля демонстрируют разнонаправленное движение. Другими словами, если доходность ценной бумаги будет расти, то доходность портфеля будет падать, и наоборот. Положительное значение свидетельствует о том, что доходность ценной бумаги и портфеля изменяются в одном направлении.

Низкое значение (близкое к 0) коэффициента ковариации наблюдается в том случае, когда колебания доходности ценной бумаги и доходности портфеля носят случайный характер.

Источник

Ковариация

Что такое Ковариация?

Ковариация измеряет направленную взаимосвязь между доходностью двух активов . Положительная ковариация означает, что доходность активов движется вместе, а отрицательная ковариация означает, что они движутся обратно. Ковариация рассчитывается путем анализа неожиданностей при доходности ( стандартных отклонений от ожидаемой доходности) или умножения корреляции между двумя переменными на стандартное отклонение каждой переменной.

Ключевые моменты

  • Ковариация – это статистический инструмент, который используется для определения взаимосвязи между движением цен двух активов.
  • Когда две акции имеют тенденцию двигаться вместе, они считаются имеющими положительную ковариацию; когда они движутся обратно, ковариация отрицательная.
  • Ковариация – важный инструмент в современной теории портфеля, используемый для определения того, какие ценные бумаги следует поместить в портфель.
  • Риск и волатильность портфеля можно снизить, объединив активы с отрицательной ковариацией.

Понимание ковариации

Ковариация оценивает, как средние значения двух переменных перемещаются вместе. Если доходность акции A увеличивается всякий раз, когда доходность акции B увеличивается, и такая же взаимосвязь обнаруживается, когда доходность каждой акции уменьшается, то считается, что эти акции имеют положительную ковариацию. В финансах ковариации рассчитываются, чтобы помочь диверсифицировать ценные бумаги.

Когда у аналитика есть набор данных, пара значений x и y, ковариация может быть рассчитана с использованием пяти переменных из этих данных. Они есть:

  • x i = заданное значение x в наборе данных
  • x m = среднее или среднее значение x
  • y i = значение y в наборе данных, которое соответствует x i
  • y m = среднее или среднее значение y
  • n = количество точек данных

Учитывая эту информацию, формула ковариации: Cov (x, y) = SUM [(x i – x m ) * (y i – y m )] / (n – 1)

Краткая справка

Хотя ковариация действительно измеряет направленную взаимосвязь между двумя активами, она не показывает силу взаимосвязи между двумя активами; коэффициент корреляции является более подходящим показателем этой силы.

Ковариационные приложения

Ковариации имеют важное применение в финансах и современной теории портфелей . Например, в модели ценообразования капитальных активов ( CAPM ), которая используется для расчета ожидаемой доходности актива, ковариация между ценными бумагами и рынком используется в формуле для одной из ключевых переменных модели, бета . В CAPM бета измеряет волатильность или систематический риск ценной бумаги по сравнению с рынком в целом; это практическая мера, основанная на ковариации для оценки подверженности инвестора риску, характерному для одной ценной бумаги.

Между тем, теория портфелей использует ковариации для статистического снижения общего риска портфеля за счет защиты от волатильности за счет диверсификации с учетом ковариаций.

Читайте также:  Блог про инвестиции инстаграм

Краткая справка

Обладание финансовыми активами с доходностью, имеющей аналогичные ковариации, не обеспечивает большой диверсификации; следовательно, диверсифицированный портфель, вероятно, будет содержать набор финансовых активов с различными ковариациями.

Пример расчета ковариации

Предположим, что у аналитика компании есть набор данных за пять кварталов, который показывает квартальный рост валового внутреннего продукта ( ВВП ) в процентах (x) и рост новой линейки продуктов компании в процентах (y). Набор данных может выглядеть так:

  • Q1: x = 2, y = 10
  • Q2: x = 3, y = 14
  • Q3: x = 2,7, y = 12
  • Q4: x = 3,2, y = 15
  • Q5: x = 4,1, y = 20

Среднее значение x равно 3, а среднее значение y равно 14,2. Чтобы вычислить ковариацию , сумма произведений значений x i минус среднее значение x, умноженное на значения y i минус средние значения y, будет разделена на (n-1) следующим образом:

Cov (x, y) = ((2 – 3) x (10 – 14,2) + (3 – 3) x (14 – 14,2) + … (4,1 – 3) x (20 – 14,2)) / 4 = (4,2 + 0 + 0,66 + 0,16 + 6,38) / 4 = 2,85

Рассчитав здесь положительную ковариацию, аналитик может сказать, что рост новой продуктовой линейки компании имеет положительную связь с квартальным ростом ВВП.

Источник

CFA — Ожидаемая доходность, ковариация и корреляция активов инвестиционного портфеля

Расчет и интерпретация ожидаемой доходности, дисперсии доходности, ковариации и корреляции активов инвестиционного портфеля являются фундаментальными навыками финансового аналитика. Рассмотрим эти концепции, — в рамках изучения количественных методов по программе CFA.

Современная теория инвестиционного портфеля часто использует идею о том, что инвестиционные возможности можно оценить с использованием ожидаемой доходности в качестве меры вознаграждения и дисперсии доходности в качестве меры риска.

Расчет и интерпретация ожидаемой доходности и дисперсии доходности портфеля являются фундаментальными навыками финансового аналитика. В этом разделе мы рассмотрим концепции ожидаемой доходности портфеля и дисперсии доходности.

Хотя в этом разделе мы коснемся ряда основных понятий, мы не будем разбирать портфельную теорию как таковую. Портфельная теория Марковица (англ. ‘mean-variance analysis’) будет рассматриваться в следующих чтениях.

Доходность портфеля определяется доходностью отдельных его составляющих. В результате расчет дисперсии портфеля как функция доходности отдельного актива является более сложным, чем расчет дисперсии, проиллюстрированный в предыдущем разделе.

Рассмотрим пример портфеля,

  • 50% которого инвестируются в фонд индекса S&P 500,
  • 25% — в фонд долгосрочных корпоративных облигаций США, и
  • 25% — в фонд индекса MSCI EAFE (представляющий рынки акций в Европе, Австралии и на Дальнем Востоке).

Таблица 5 показывает это распределение.

Таблица 5. Портфельные веса.

Долгосрочные корпоративные облигации США

Сначала рассмотрим расчет ожидаемой доходности портфеля. В предыдущем разделе мы определили ожидаемое значение случайной величины как средневзвешенную вероятность возможных результатов случайной величины.

Мы знаем, что доходность портфеля — это средневзвешенная доходность ценных бумаг в портфеле. Аналогично, ожидаемая доходность портфеля представляет собой средневзвешенную величину ожидаемой доходности ценных бумаг в портфеле с использованием точно таких же весов.

Когда мы оценили ожидаемую доходность отдельных ценных бумаг, мы сразу же получили ожидаемую доходность портфеля. Этот удобный факт вытекает из свойств ожидаемого значения.

Свойства ожидаемого значения.

Пусть \( w_i \) — любая постоянная величина (константа), а \( R_i \) — случайная величина.

1. Ожидаемое значение постоянной величины, умноженной на случайную величину, равно постоянной, умноженной на ожидаемое значение случайной величины.

2. Ожидаемое значение взвешенной суммы случайных величин равно взвешенной сумме ожидаемых значений с использованием тех же весов.

\( E (w_1R_1 + w_2R_2 + \ldots + w_nR_n) \)
\(= w_1E (R_1) + w_2E(R_2) + . + w_nE(R_n) \)
(формула 13)

Предположим, у нас есть случайная величина с заданным ожидаемым значением. Например, если мы умножим каждый результат на 2, ожидаемое значение случайной величины умножится также на 2. В этом смысл части 1.

Второе утверждение — это правило, которое напрямую приводит к выражению ожидаемой доходности портфеля.

Портфель с n ценными бумагами определяется весами его портфеля, \( w_1, w_2, \ldots, w_n \), которые в сумме составляют 1. Таким образом, доходность портфеля, \( R_p \), равна \( R_p = w_1R_1 + w_2R_2 + \ldots + w_nR_n \).

Теперь мы можем сформулировать следующий принцип:

Расчет ожидаемой доходности портфеля.

Для портфеля с n ценными бумагами ожидаемая доходность портфеля представляет собой средневзвешенную ожидаемую доходность по включенным в него ценным бумагам:

\( \begin E(R_p) &= E(w_1R_1 + w_2R_2 + \ldots + w_nR_n) \\ &= w_1E(R_1) + w_2E(R_2) + \ldots + w_nE (R_n) \end \)

Предположим, мы оценили ожидаемую доходность активов в портфеле, как показано в Таблице 6.

Таблица 6. Веса и ожидаемая доходность активов в портфеле.

Долгосрочные корпоративные облигации США

Мы рассчитываем ожидаемую доходность портфеля как 11.75%:

\( \begin E(R_p) &= w_1E(R_1) + w_2E(R_2) + w_3E (R_3) \\ &= 0.50(13\%) + 0.25(6\%) + 0.25(15\%) = 11.75\% \end \)

В предыдущем разделе мы изучали дисперсию как меру рассеивания результатов вокруг ожидаемого значения. Здесь нас интересует дисперсия доходности портфеля как мера инвестиционного риска.

Если \( R_p \) обозначает доходность портфеля, то дисперсия доходности портфеля составляет \( \sigma^2(R_p) = E \Big\ < \big[R_p - E(R_p)\big]^2 \Big\>\) в соответствии с Формулой 8.

Как можно использовать это определение на практике?

В чтении о статистических концепциях и рыночной доходности мы узнали, как рассчитать историческую или выборочную дисперсию на основе выборки ставок доходности.

Теперь мы рассматриваем дисперсию в прогностическом смысле. Мы будем использовать информацию об отдельных активах в портфеле, чтобы получить доходность всего портфеля.

Чтобы избежать беспорядка в обозначениях, мы пишем \( ER_p \) вместо \(E(R_p)\). Нам нужна концепция ковариации.

Определение ковариации.

Для двух случайных величин \(R_i\) и \(R_j\) ковариация между \(R_i\) и \(R_j\) равна

\( \textrm \big(R_i, R_j\big) = E \big[(R_i — ER_i) (R_j — ER_j)\big] \)

(Формула 14)

Альтернативными обозначениями являются \(\sigma(R_i,R_j)\) и \(\sigma_\).

Формула 14 утверждает, что ковариация (англ. ‘covariance’) между двумя случайными переменными является средневзвешенной вероятностью для перекрестных произведений отклонения каждой случайной переменной от ее собственного ожидаемого значения.

Используя определением дисперсии, мы находим:

\( \begin &= E \big[w_1w_1(R_1 — ER_1)(R_1 — ER_1) + w_1w_2(R_1 — ER_1)(R_2 — ER_2) \\ &+ w_1w_3(R_1 — ER_1)(R_3 — ER_3) + w_2w_1(R_2 — ER_2)(R_1 — ER_1) \\ &+ w_2w_2(R_2 — ER_2)(R_2 — ER_2) + w_2w_3(R_2 — ER_2)(R_3 — ER_3) \\ &+ w_3w_1(R_3 — ER_3)(R_1 — ER_1) + w_3w_2(R_3 — ER_3)(R_2 — ER_2) \\ &+ w_3w_3(R_3 — ER_3)(R_3 — ER_3) \big] \end \)
(выполняем умножение)

\( \begin &= w^1_2E \big[(R_1 — ER_1)^2 \big] + w_1w_2E \big[(R_1 — ER_1) (R_2 — ER_2) \big] \\ &+ w_1w_3E \big[(R_1 — ER_1) (R_3 — ER_3) \big] + w_2w_1E \big[(R_2 — ER_2) (R_1 — ER_1) \big] \\ &+ w^2_2E \big[(R_2 — ER_2)^2 \big] + w_2w_3E \big[(R_2 — ER_2) (R_3 — ER_3) \big] \\ &+ w_3w_1E \big[(R_3 — ER_3) (R_1 — ER_1) \big] + w_3w_2E \big[(R_3 — ER_3) (R_2 — ER_2) \big] \\ &+ w^2_3E \big[(R_3 — ER_3)^2 \big] \end \)

(напомим, что \(w_i\) являются постоянными величинами)

\( \begin &= w^2_1 \sigma^2 (R_1) + w_1w_2 \textrm (R_1, R_2) + w_1w_3 \textrm (R_1, R_3) \\ &+ w_1w_2 Cov(R_1, R_2) + w^2_2 \sigma^2 (R_2) + w_2w_3 \textrm (R_2, R_3) \\ &+ w_1w_3 Cov(R_1, R_3) + w_2w_3 Cov(R_2, R_3) + w^2_3 \sigma^2 (R_3) \end \)
(формула 15)

Последний шаг следует из определений дисперсии и ковариации.

Полезные факты о дисперсии и ковариации включают в себя следующее:

  1. Дисперсия постоянной величины (константы) умноженная на случайную величину равна квадрату константы умноженной на дисперсию случайной величины, или \( \sigma^2(wR) = w^2\sigma^2(R) \);
  2. Дисперсия константы плюс случайная величина равна дисперсии случайной величины, или \( \sigma^2(w + R) = \sigma 2(R)\), поскольку константа имеет нулевую дисперсию;
  3. Ковариация между константой и случайной величиной равна нулю.

Для выделенных курсивом ковариационных членов в Формуле 15 мы использовали тот факт, что порядок переменных в ковариации не имеет значения: например, \(\textrm(R_2,R_1) = \textrm(R_1,R_2) \).

Как мы покажем далее, диагональные дисперсионные члены \(\sigma^2(R_1)\), \(\sigma^2(R2)\) и \(\sigma^2(R_3)\) могут быть выражены как \(\textrm(R_1,R_1)\), \(\textrm(R_2,R_2)\) и \(\textrm(R_3,R_3)\), соответственно.

Опираясь на этот факт, можно вывести наиболее компактный вид Формулы 15:

\( \sigma^2(R_p) = \sum_^ <3>\sum_^<3>w_i w_j \textrm(R_i,R_j) \)

Знаки суммирования говорят: «Установите i = 1, и пусть j меняется от 1 до 3; затем установите i = 2 и пусть j меняется от 1 до 3; затем установите i = 3 и пусть j меняется от 1 до 3; наконец, добавьте девять членов».

Эту формулу можно использовать для портфеля любого размера n:

\( \sigma^2(R_p) = \sum_^ <3>\sum_^<3>w_i w_j \textrm(R_i,R_j) \)
(Формула 16)

Из Формулы 15 видно, что отдельные отклонения доходности составляют часть, но не все отклонения портфеля. Три отклонения фактически превосходят по численности шесть ковариационных членов вне диагонали. Для трех активов это соотношение составляет 1 к 2 или 50 процентов.

Если имеется 20 активов, то есть 20 дисперсионных слагаемых и 20(20) — 20 = 380 недиагональных ковариационных слагаемых. Отношение слагаемых дисперсии к недиагональным слагаемым ковариации составляет менее 6 к 100, или 6%. Таким образом, первое наблюдение заключается в том, что с увеличением числа активов портфеля ковариация становится все более важной, в остальном все не меняется.

Когда значение ковариации как «недиагональной ковариации» очевидно, как здесь, мы опускаем уточняющие слова. Ковариация обычно используется в этом смысле.

Как именно влияет ковариация на дисперсию доходности портфеля?

Члены ковариации показывают, как совместное движение доходности отдельных активов влияет на дисперсию всего портфеля.

Например, рассмотрим две акции: одна имеет тенденцию к высокой доходности (относительно ее ожидаемой доходности), а другая имеет низкую доходность (относительно ее ожидаемой доходности).

Доходность одной акции имеет тенденцию компенсировать доходность другой акции, снижая изменчивость или дисперсию доходности портфеля.

Как и дисперсию, значения ковариации трудно интерпретировать, и мы вскоре представим более интуитивно понятную концепцию. Между тем, из определения ковариации мы можем установить два существенных примечания о ковариации.

1. Мы можем интерпретировать ковариацию следующим образом:

  • Ковариация доходности отрицательна, когда доходность одного актива выше его ожидаемого значения, а доходность другого актива имеет тенденцию быть ниже его ожидаемого значения (средняя обратная зависимость между ставками доходности).
  • Ковариация доходности равна 0, если доходность активов не связана.
  • Ковариация доходности положительна, когда доходность обоих активов, как правило, находятся по одну сторону (выше или ниже) относительно ожидаемых значений в одно и то же время (средняя положительная зависимость между ставками доходности).

2. Ковариация случайной величины с самой собой (собственная ковариация) — это ее собственная дисперсия:

Полный список ковариаций составляет все статистические данные, необходимые для расчета дисперсии доходности портфеля. Ковариации часто представлены в табличном формате, который называется ковариационной матрицей (англ. ‘covariance matrix’).

В Таблице 7 показано, как вводятся расчетные значения в ковариационную матрицу для ожидаемой доходности и дисперсии доходности портфеля.

Таблица 7. Ожидаемая доходность и дисперсия портфеля — значения матрицы:

Для трех активов ковариационная матрица имеет \(3^2 = 3 \times 3 = 9 \) ячеек, но значения ячеек по диагонали (дисперсия) обычно рассчитываются отдельно от недиагональных ячеек. Эти диагональные значения выделены жирным шрифтом в Таблице 7.

Это различие естественно, так как дисперсия акций — это концепция с одной переменной. Таким образом, есть 9 — 3 = 6 ковариаций, исключая дисперсии.

Но \(\textrm(R_B,R_A) = \textrm(R_А,R_В)\), \( \textrm(R_С,R_A) = \textrm(R_B,R_A) \) и \( \textrm(R_С,R_B) = \textrm(R_B,R_C) \).

Ковариационная матрица под диагональю является зеркальным отображением ковариационной матрицы над диагональю. В результате, есть только 6/2 = 3 различных ковариационных члена для оценки. В целом, для n ценных бумаг существует \( n(n — 1)/2 \) различных ковариаций для оценки и n дисперсий для оценки.

Предположим, у нас есть ковариационная матрица, показанная в Таблице 8.

Мы будем работать с доходностью, указанной в процентах, а записи в таблице будут выражены в процентах в квадрате (% 2 ). Члены 38% 2 и 400% 2 равны 0.0038 и 0.0400 соответственно в десятичном виде; правильная работа в процентах и ​​десятичных дробях приводит к одинаковым ответам.

Таблица 8. Ковариационная матрица.

Долгосрочные корпоративные облигации США

Долгосрочные корпоративные облигации США

Если взять Формулу 15 и сгруппировать дисперсионные члены, мы получим следующее:

\( \begin \sigma^2(R_p) &= w_1^2 \sigma^2(R_2) + w_2^2 \sigma^2(R_2) + w_3^2 \sigma^2(R_3) + 2w_1w_2 \textrm(R_1,R_2) \\ &+ 2w_1w_3 \textrm(R_1,R_3) + 2w_2w_3 \textrm(R_2,R_3) \end \)
(Формула 17)

\( \begin &= (0.50)^2(400) + (0.25)^2(81) + (0.25)^2(441) \\ &+ 2(0.50)(0.25)(45) + 2(0.50)(0.25)(189) \\ &+ 2(0.25)(0.25)(38) \\ &= 100 + 5.0625 + 27.5625 + 11.25 + 47.25 + 4.75 = 195.875 \end \)

Разница составляет 195.875. Стандартное отклонение доходности составляет 195.875 1/2 = 14%. В итоге, ожидаемая годовая доходность портфеля составляет 11.75%, а стандартное отклонение доходности — 14%.

Давайте посмотрим на первые три члена в приведенном выше расчете. Их сумма, 100 + 5.0625 + 27.5625 = 132.625, является вкладом отдельных дисперсий активов в общую дисперсию портфеля. Если бы доходность по трем активам была независимой, ковариации были бы равны 0, а стандартное отклонение доходности портфеля составило бы 132.625 1/2 = 11.52% по сравнению с 14% ранее.

Портфель будет иметь меньший риск. Предположим, что члены ковариации были отрицательными. Тогда к 132.625 будет добавлено отрицательное число, поэтому дисперсия портфеля и риск будут еще меньше.

В то же время мы не изменили ожидаемую доходность. При той же ожидаемой доходности портфеля, портфель имеет меньший риск. Это снижение риска является преимуществом диверсификации, что означает снижение риска от владения портфелем активов.

Преимущество диверсификации увеличивается с уменьшением ковариации.

Это наблюдение является ключевым понятием современной теории портфеля. Это станет еще более интуитивно понятно, когда мы рассмотрим концепцию корреляции. Тогда мы сможем сказать, что до тех пор, пока ставки доходности акций портфеля не имеют абсолютно положительной корреляции, возможны преимущества диверсификации.

Кроме того, чем меньше корреляция между доходностью акций, тем выше стоимость отказа от диверсификации (с точки зрения упущенных выгод от снижения риска), при прочих равных условиях.

Определение корреляции.

Корреляция (англ. ‘correlation’) между двумя случайными величинами, \(R_i\) и \(R_j\), определяется как:

\( \rho(R_i,R_j) = \ <\mathrm(R_i, R_j) \over \sigma(R_i)\sigma(R_j)> \).

Альтернативными обозначениями корреляции являются \(\textrm(R_i,R_j) \) и \( \rho_\).

Ковариация часто представляется с использованием выражения:

\( \textrm(R_i, R_j) = \rho(R_i,R_j) \sigma(R_i)\sigma(R_j) \)

Деление, указанное в определении, делает корреляцию чистым числом (т.е. без единицы измерения) и устанавливает границы для ее наибольшего и наименьшего возможных значений.

Используя приведенное выше определение, мы можем сформулировать корреляционную матрицу только на основе данных из ковариационной матрицы. В Таблице 9 показана матрица корреляции.

Источник

Читайте также:  Bitcoin личный кабинет криптобиржа currency com
Оцените статью