Ковариация доходности коэффициент корреляции
3 Ковариация и корреляция.
Ковариация — это мера, учитывающая дисперсию индивидуальных значений доходности бумаги и силу связей между изменениями доходностей данной бумаги и других. Более простое определение ковариации — это мера взаимодействия двух случайных переменных.
Формула для расчета ковариации следующая:
(2.6)
где rx и ry – доходности активов X и Y,
rXсред и rYсред — ожидаемые (средние) доходности активов X и Y,
n – число наблюдений.
Интерпретация коэффициента следующая: положительное значение ковариации говорит о том, что значения доходности этих акций изменяются в одном направлении, отрицательное значение ковариации говорит о разнонаправленных движениях между доходностями. Ковариация является низкой, если колебания доходностей двух активов в любую сторону носят случайный характер.
Интерпретировать ковариацию, также как и дисперсию, довольно тяжело ввиду больших численных значений, поэтому практически всегда для измерения силы взаимосвязи между двумя активами используется коэффициент корреляции.
Коэффициент корреляции лежит в интервале от -1 до +1. Значение корреляции +1 говорит о сильной взаимосвязи, т.е. активы ходят одинаково. Значение -1, наоборот, свидетельствует о разнонаправленности, т.е. рост одного из активов сопровождается падением другого. Значение 0 говорит об отсутствии корреляции.
Расчет корреляции осуществляется по формуле:
(2.7)
где cov(X,Y) — ковариация между активами X и Y,
в знаменателе — стандартные отклонения активов X и Y
Приведем пример расчета ковариации и корреляции при помощи Excel между бумагами РАО ЕЭС, Лукойл и Ростелеком, пользуясь встроенными функциями КОВАР и КОРРЕЛ.
Рисунок 2.18 – Вид с формулами
В результате получим:
Рисунок 2.19 – Вид со значениями
Как видно из таблицы корреляции ежемесячные доходности наших активов на отрезке 2004 года являются положительно-коррелированы, что, конечно же, не очень хорошо, однако даже включение в портфель положительно-коррелированных активов способно существенно снизить риск всего портфеля. Вооружившись всеми теми данными, которые теперь есть можно спокойно переходить формированию портфеля и проблемам, связанными с этим.
Источник
Ковариация
Ковариацией $cov\left(X,\ Y\right)$ случайных величин $X$ и $Y$ называется математическое ожидание произведения случайных величин $X-M\left(X\right)$ и $Y-M\left(Y\right)$, то есть:
Бывает удобно вычислять ковариацию случайных величин $X$ и $Y$ по следующей формуле:
которая может быть получена из первой формулы, используя свойства математического ожидания. Перечислим основные свойства ковариации.
1. Ковариация случайной величины с самой собой есть ее дисперсия.
2. Ковариация симметрична.
$$cov\left(X,\ Y\right)=cov\left(Y,\ X\right).$$
3. Если случайные величины $X$ и $Y$ независимы, то:
4. Постоянный множитель можно выносить за знак ковариации.
$$cov\left(cX,\ Y\right)=cov\left(X,\ cY\right)=c\cdot cov\left(X,\ Y\right).$$
5. Ковариация не изменится, если к одной из случайных величин (или двум сразу) прибавить постоянную величину:
$$cov\left(X+c,\ Y\right)=cov\left(X,\ Y+c\right)=cov\left(X+x,\ Y+c\right)=cov\left(X,\ Y\right).$$
6. $cov\left(aX+b,\ cY+d\right)=ac\cdot cov\left(X,\ Y\right)$.
8. $\left|cov\left(X,\ Y\right)\right|=\sqrt
9. Дисперсия суммы (разности) случайных величин равна сумме их дисперсий плюс (минус) удвоенная ковариация этих случайных величин:
$$D\left(X\pm Y\right)=D\left(X\right)+D\left(Y\right)\pm 2cov\left(X,\ Y\right).$$
Пример 1. Дана корреляционная таблица случайного вектора $\left(X,\ Y\right)$. Вычислить ковариацию $cov\left(X,\ Y\right)$.
$\begin
\hline
X\backslash Y & -6 & 0 & 3 \\
\hline
-2 & 0,1 & 0 & 0,2 \\
\hline
0 & 0,05 & p_ <22>& 0 \\
\hline
1 & 0 & 0,2 & 0,05 \\
\hline
7 & 0,1 & 0 & 0,1 \\
\hline
\end
События $\left(X=x_i,\ Y=y_j\right)$ образуют полную группу событий, поэтому сумма всех вероятностей $p_
$\begin
\hline
X\backslash Y & -6 & 0 & 3 \\
\hline
-2 & 0,1 & 0 & 0,2 \\
\hline
0 & 0,05 & 0,2 & 0 \\
\hline
1 & 0 & 0,2 & 0,05 \\
\hline
7 & 0,1 & 0 & 0,1 \\
\hline
\end
Пользуясь формулой $p_ =\sum _
$\begin
\hline
X & -2 & 0 & 1 & 7 \\
\hline
p_i & 0,3 & 0,25 & 0,25 & 0,2 \\
\hline
\end
$$M\left(X\right)=\sum^n_
Пользуясь формулой $q_
$$M\left(Y\right)=\sum^n_
Поскольку $P\left(X=-2,\ Y=-6\right)=0,1\ne 0,3\cdot 0,25$, то случайные величины $X,\ Y$ являются зависимыми.
Определим ковариацию $cov\ \left(X,\ Y\right)$ случайных величин $X,\ Y$ по формуле $cov\left(X,\ Y\right)=M\left(XY\right)-M\left(X\right)M\left(Y\right)$. Математическое ожидание произведения случайных величин $X,\ Y$ равно:
$$M\left(XY\right)=\sum_
Тогда $cov\left(X,\ Y\right)=M\left(XY\right)-M\left(X\right)M\left(Y\right)=-1,95-1,05\cdot \left(-0,45\right)=-1,4775.$ Если случайные величины независимы, то их ковариации равна нулю. В нашем случае $cov(X,Y)\ne 0$.
Корреляция
Коэффициентом корреляции случайных величин $X$ и $Y$ называется число:
Перечислим основные свойства коэффициента корреляции.
1. $\rho \left(X,\ X\right)=1$.
2. $\rho \left(X,\ Y\right)=\rho \left(Y,\ X\right)$.
3. $\rho \left(X,\ Y\right)=0$ для независимых случайных величин $X$ и $Y$.
5. $\left|\rho \left(X,\ Y\right)\right|\le 1$.
6. $\left|\rho \left(X,\ Y\right)\right|=1\Leftrightarrow Y=aX+b$.
Ранее было сказано, что коэффициент корреляции $\rho \left(X,\ Y\right)$ отражает степень линейной зависимости между двумя случайными величинами $X$ и $Y$.
При $\rho \left(X,\ Y\right)>0$ можно сделать вывод о том, что с ростом случайной величины $X$ случайная величина $Y$ имеет тенденцию к увеличению. Это называется положительной корреляционной зависимостью. Например, рост и вес человека связаны положительной корреляционной зависимостью.
При $\rho \left(X,\ Y\right) Да Нет
При копировании материала с сайта, обратная ссылка обязательна!
Источник
Коэффициент корреляции | Correlation coefficient
В статистике коэффициент корреляции (англ. Correlation Coefficient) используется для проверки гипотезы о существовании зависимости между двумя случайными величинами, а также позволяет оценить ее силу. В портфельной теории этот показатель, как правило, используется для определения характера и силы зависимости между доходностью ценной бумаги (актива) и доходностью портфеля. Если распределение этих переменных является нормальным или близким к нормальному, то следует использовать коэффициент корреляции Пирсона, который рассчитывается по следующей формуле:
— среднеквадратическое (стандартное) отклонение доходности i-ой ценной бумаги;
— среднеквадратическое (стандартное) отклонение доходности портфеля.
В расширенном виде формулу коэффициента корреляции Пирсона можно записать следующим образом:
где ki – доходность ценной бумаги в i-ом периоде;
— ожидаемая (средняя) доходность ценной бумаги;
pi – доходность портфеля в i-ом периоде;
— ожидаемая (средняя) доходность портфеля.
n – количество наблюдений.
Свойства коэффициента корреляции
Значение коэффициента корреляции изменяется от -1 до +1. Его отрицательное значение говорит о том, что между переменными наблюдается обратная взаимосвязь. Например, когда доходность ценной бумаги будет расти, то доходность портфеля будет падать, и наоборот. Положительное значение свидетельствует о прямой взаимосвязи, то есть, если доходность ценной бумаги будет расти, доходность портфеля также будет расти, и наоборот.
Если абсолютное значение коэффициента корреляции находится ближе к 1, то это свидетельствует о сильной взаимосвязи между переменными, а если ближе к 0 — то это говорит о слабой связи или ее отсутствии. Если его значение равно -1 или +1, то можно говорить о существовании функциональной взаимосвязи между переменными, то есть одну из них можно выразить через другую посредством математической функции.
Пример расчета
Динамика доходности акций Компании А и Компании Б, а также динамика доходности портфеля ценных бумаг выглядят следующим образом:
Чтобы использовать формулу коэффициента корреляции Пирсона необходимо рассчитать среднюю доходность, которая составит:
- для акций Компании А 4,986%;
- для акций Компании Б 5,031%;
- для портфеля 3,201%.
Ковариация доходности акций Компании А и портфеля составит -0,313, а акций Компании Б и портфеля 0,242. (О том, как рассчитывается ковариация доходности можно прочитать здесь)
Среднеквадратическое отклонение доходности акций Компании А составит 0,6398, акций Компании Б 0,5241 и портфеля 0,5668. (О том, как рассчитывается среднеквадратическое отклонение можно прочитать здесь)
Коэффициент корреляции доходности акций Компании А и доходности портфеля составит -0,864, а акций Компании Б 0,816.
RБ = 0,242/(0,5241*0,5668) = 0,816
Можно сделать вывод о присутствии достаточно сильной взаимосвязи между доходностью портфеля и доходностью акций Компании А и Компании Б. При этом, доходность акций Компании А демонстрирует разнонаправленное движение с доходностью портфеля, а доходность акций Компании Б однонаправленное движение.
Источник
Ковариация | Covariance
Математически ковариация (англ. Covariance) представляет собой меру линейной зависимости двух случайных величин. В портфельной теории этот показатель используется для определения зависимости между доходностью определенной ценной бумаги и доходностью портфеля ценных бумаг. Чтобы рассчитать ковариацию доходности необходимо воспользоваться следующей формулой:
где ki – доходность ценной бумаги в i-ом периоде;
— ожидаемая (средняя) доходность ценной бумаги;
pi – доходность портфеля в i-ом периоде;
— ожидаемая (средняя) доходность портфеля;
n – количество наблюдений.
Следует отметить, что в знаменатель формулы подставляется (n-1), если ковариация рассчитывается на основании выборки из генеральной совокупности наблюдений. Если в расчетах учитывается вся генеральная совокупность, то в знаменатель подставляется n.
Пример. В таблице представлена динамика доходность акций Компании А и Компании Б, а также динамика доходности портфеля ценных бумаг.
Чтобы воспользоваться вышеприведенной формулой для расчета ковариации доходности каждой из акций с портфелем необходимо рассчитать среднюю доходность, которая составит:
- для акций Компании А 4,986%;
- для акций Компании Б 5,031%;
- для портфеля 3,201%.
Таким образом, ковариация акций Компании А с портфелем составит -0,313, а акций Компании Б 0,242.
Cov (kA, kp) = ((5,93-4,986)(2,27-3,201) + (5,85-4,986)(2,39-3,201) + (5,21-4,986)(3,47-3,201) + (5,37-4,986)(3,21-3,201) + (4,99-4,986)(2,95-3,201) + (4,87-4,986)(2,97-3,201) + (4,70-4,986)(3,32-3,201) + (4,75-4,986)(3,65-3,201) + (4,33-4,986)(3,97-3,201) + (3,86-4,986)(3,81-3,201))/(10-1) = -0,313
Cov (kБ, kp) = ((4,25-5,031)(2,27-3,201) + (4,47-5,031)(2,39-3,201) + (4,68-5,031)(3,47-3,201) + (4,71-5,031)(3,21-3,201) + (4,77-5,031)(2,95-3,201) + (5,25-5,031)(2,97-3,201) + (5,45-5,031)(3,32-3,201) + (5,33-5,031)(3,65-3,201) + (5,55-5,031)(3,97-3,201) + (5,85-5,031)(3,81-3,201))/(10-1) = 0,242
Аналогичные расчеты можно произвести в Microsoft Excel при помощи функции «КОВАРИАЦИЯ.В» для выборки из генеральной совокупности или функции «КОВАРИАЦИЯ.Г» для всей генеральной совокупности.
Интерпретация ковариации
Значение коэффициента ковариации может быть как отрицательным, так и положительным. Его отрицательное значение говорит о том, что доходность ценной бумаги и доходность портфеля демонстрируют разнонаправленное движение. Другими словами, если доходность ценной бумаги будет расти, то доходность портфеля будет падать, и наоборот. Положительное значение свидетельствует о том, что доходность ценной бумаги и портфеля изменяются в одном направлении.
Низкое значение (близкое к 0) коэффициента ковариации наблюдается в том случае, когда колебания доходности ценной бумаги и доходности портфеля носят случайный характер.
Источник