Коэффициент вариации характеризует доходность

Задача №48. Расчёт показателей вариации

У инвестора имеется две альтернативы вложения денежных средств в деятельность торговых компаний А и В. Анализ показал, что рентабельность аналогичных компаний за последние 5 лет составила:

Организации 1 год 2 год 3 год 4 год 5 год
Компания А (Рентабельность продаж,%) 21 14 30 29 12
Компания В (Рентабельность продаж,%) 17 24 25 28 15

Исходя из критерия риска, выберите и обоснуйте наиболее предпочтительный для инвестора вариант (рассчитайте среднее квадратическое отклонение и коэффициент вариации).

Решение:

Рассчитаем среднее значение рентабельности продаж по формуле средней арифметической простой:

Построим вспомогательную таблицу расчётных данных:

Рентабельность продаж,% Рентабельность продаж,% 1 21 0,04 17 23,04 2 14 51,84 24 4,84 3 30 77,44 25 10,24 4 29 60,84 28 38,44 5 12 84,64 15 46,24 Итого 106 274,8 109 122,8 Среднее 21,2 54,96 21,8 24,56 Среднее квадратическое отклонение — 7,413501 — 4,955805 Коэффициент вариации, % — 34,96935 — 22,73305

Средняя рентабельность продаж для организации А:

Средняя рентабельность продаж для организации В:

Дисперсия — это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в дискретных рядах распределения производится по формуле:

Среднее квадратическое отклонение определим по формуле:

Коэффициент вариации рассчитывается по формуле:

По величине коэффициента вариации можно судить о степени вариации рентабельности продаж. Чем больше его величина, тем больше разброс значения признаков вокруг средней, тем более рискован проект.

Вложения денежных средств в деятельность торговой компании А подвержены большему риску, так как коэффициент вариации больше и он очень высокий. Поэтому для вложения денежных средств наиболее предпочтителен вариант инвестирования в деятельность торговой компании В.

Источник

CFA — Коэффициент вариации

Коэффициент вариации – относительная мера дисперсии и поэтому он полезен для сравнения изменчивости финансовых данных, выраженных в разных единицах измерения. Рассмотрим коэффициент вариации в рамках изучения количественных методов по программе CFA.

Ранее мы отмечали, что стандартное отклонение легче интерпретировать, чем дисперсию, поскольку стандартное отклонение выражается в тех же единицах измерения, что и наблюдения.

Иногда нам может быть трудно понять, что означает стандартное отклонение с точки зрения относительной степени изменчивости различных наборов данных, либо потому, что наборы данных имеют значительно отличающиеся средние, либо потому, что наборы данных имеют разные единицы измерения.

Далее мы рассмотрим относительную меру дисперсии — коэффициент вариации, который может быть полезен в таких ситуациях. Относительная дисперсия (англ. ‘relative dispersion’) — это значение дисперсии, рассчитанное относительно контрольного значения.

Мы можем проиллюстрировать проблему интерпретации стандартного отклонения для двух значительно отличающихся наборов данных, используя две гипотетические выборки финансовых данных.

Первая выборка включает небольшие компании с объемом продаж за 2003 год в размере €50 млн., €75 млн., €65 млн. и €90 млн.

Вторая выборка включает крупные компании с объемом продаж за 2003 году в размере €800 млн., €825 млн., €815 млн. и €840 млн.

Используя Формулу 14, мы можем убедиться, что стандартное отклонение продаж для обоих выборок составляет €16.8 млн.

Вторая выборка была создана путем добавления €750 млн. к каждому наблюдению из первой выборки. Стандартное отклонение (и дисперсия) имеет свойство оставаться неизменным, если мы добавляем постоянную величину к каждому наблюдению.

Читайте также:  Китайские криптовалюты список лучших 2021

В первой выборке самое большое наблюдение, €90 млн., — на 80% больше, чем самое маленькое наблюдение, €50 млн. Во второй выборке самое большое наблюдение всего на 5% больше, чем самое маленькое наблюдение.

По сути, стандартное отклонение в размере €16.8 млн. представляет собой высокую степень изменчивости для первой выборки со средними продажами в размере €70 млн., но незначительную степень изменчивости для второй выборки, средние продажи которой составляют €820 млн.

Коэффициент вариации полезен в ситуациях, подобных только что описанной.

Формула коэффициента вариации.

Коэффициент вариации или CV (от англ. ‘coefficient of variation’), представляет собой отношение стандартного отклонения набора наблюдений к их среднему значению:

где s — стандартное отклонение выборки, а \(\overline X \) — среднее значение выборки.

(на практике CV обычно рассчитывается в процентах, как \(100( s / \ \overline X) \) ).

Например, когда наблюдения представляют собой ставки доходности, коэффициент вариации измеряет величину риска (стандартное отклонение) на единицу средней доходности. Выражая величину вариации относительно среднего значения наблюдений, коэффициент вариации позволяет напрямую сравнивать дисперсию для различных наборов данных.

Коэффициент вариации не привязан к шкале измерения (то есть он не имеет единиц измерения).

Мы можем проиллюстрировать применение коэффициента вариации на нашем предыдущем примере двух выборок финансовых данных компаний.

  • Коэффициент вариации для первой выборки составляет (€16.8 млн.) / (€70 млн.) = 0,24.
  • Коэффициент вариации для второй выборки составляет (€16.8 млн.) / (€820 млн.) = 0,02.

Это подтверждает нашу интуитивную догадку о том, что первая выборка имеет гораздо большую изменчивость продаж, чем вторая выборка.

Обратите внимание, что 0,24 и 0,02 являются «чистыми числами» в том смысле, что они не содержат единиц измерения (поскольку мы разделили стандартное отклонение на среднее значение, которое измеряется в тех же единицах, что и стандартное отклонение).

Если нам нужно сравнить дисперсию наборов данных, выраженных в разных единицах измерения, коэффициент вариации может быть весьма полезен, поскольку он не привязан к единицам измерения.

Приведенный ниже пример иллюстрирует расчет коэффициента вариации.

Пример расчета коэффициента вариации для ставок доходности.

Таблица 24 включает среднегодовую доходность и стандартные отклонения, рассчитанные на основе месячной доходности основных фондовых индексов четырех азиатско-тихоокеанских рынков. Это индексы S&P/ASX 200 Index (Австралия), Hang Seng Index (Гонконг), Straits Times Index (Сингапур) и KOSPI Composite Index (Южная Корея).

Таблица 24. Среднеарифметическая годовая доходность и стандартное отклонение доходности для Азиатско-Тихоокеанских фондовых рынков, 2003-2012 гг.

Среднее
арифметическое
доходности (%)

Стандартное
отклонение
доходности (%)

Источник

Коэффициент вариации | Coefficient of Variation, CV

В статистике коэффициент вариации (англ. Coefficient of Variation, CV) используется для сравнения рассеивания двух случайных величин, имеющих разные единицы измерения, относительно ожидаемого значения, что позволяет получить сопоставимые результаты. В портфельной теории этот показатель используется в качестве относительной меры риска, связанного с инвестированием в определенный актив или портфель активов. Коэффициент вариации особенно полезен в ситуации, когда два актива имеют разную ожидаемую доходность и разный уровень риска (среднеквадратическое отклонение). Например, одна инвестиция может характеризоваться более высокой ожидаемой доходностью, а другая более низким среднеквадратическим отклонением.

Формула

Коэффициент вариации является отношением среднеквадратического отклонения случайной величины к ее ожидаемому значению, для чего необходимо использовать следующую формулу:

σ – среднеквадратическое отклонение случайной величины;

— ожидаемое (среднее) значение случайной величины.

Интерпретация

Коэффициент вариации является относительной мерой риска, в отличие от дисперсии и среднеквадратического отклонения, поэтому позволяет сопоставлять риск и доходность двух и более активов, которые могут существенно отличаться. Другими словами, этот показатель увязывает среднеквадратическое отклонение с ожидаемой доходностью актива, что дает возможность оценить соотношение риск/доходность в относительном выражении, что позволяет обеспечить сопоставимость полученных результатов.

Следует отметить, что когда ожидаемая доходность ценной бумаги близка к 0, то значение коэффициента вариации может быть очень большим. Поэтому незначительное изменение ожидаемой доходности ценной бумаге может приводить к значительному изменению этого показателя, что необходимо учитывать при обосновании инвестиционных решений.

Пример расчета

Финансовый аналитик должен обосновать включение в портфель дополнительной ценной бумаги, выбрав из двух ценных бумаг, историческая доходность которых за последние пять лет представлена в таблице.

Ожидаемая доходность акций Компании А составит 13,646%, а Компании Б 15,608%.

А = (14,75+7,23+15,66+18,45+12,14)/5 = 13,646%

Б = (20,33+10,85+5,22+22,41+19,23)/5 = 15,608%

При этом среднеквадратическое отклонение доходности для акций Компании А составляет 4,236%, а акций Компании Б 7,284%. (Как рассчитывается среднеквадратическое отклонение можно прочитать здесь)

В этом примере акции одновременно обладают разной ожидаемой доходностью и разным уровнем риска. При этом одна из них характеризуется более высокой ожидаемой доходностью, а другая более низким уровнем риска. Чтобы сопоставить эти ценные бумаги необходимо рассчитать коэффициент вариации доходности, который для акций Компании А будет равен 0,31, а для акций Компании Б 0,47.

Итак, ожидаемая доходность акций Компании Б превышает доходность акций Компании А в 1,144 раза (15,608/13,646), однако и риск инвестирования в них больше в 1,516 раза (0,47/0,31). Следовательно, акции Компании А являются более предпочтительными для включения в портфель, поскольку обладают лучшим соотношением риск/доходность.

Источник

Расчет коэффициента вариации

Понятие коэффициента вариации

В статистике под вариацией величин того или иного показателя в совокупности понимается различие его уровней у тех или иных единиц анализируемого состава в один и тот же период либо момент исследования. В том случае, когда выполняется анализ отличий величин показателя у одного и того же предмета, у одной и той же единицы совокупности в различные периоды или моменты времени, то это будет уже именоваться не вариацией, а колебаниями или изменениями в течении определенного периода.

Размещено на www.rnz.ru

Для изучения таких колебаний применяются свои методы анализа, имеющие отличия от методов анализа вариации. Объективным фактором возникновения явления вариации выступает различие в условиях деятельности тех или иных исследуемых объектов совокупности. Например, на работу торгового предприятия оказывает влияние уровень конкуренции, налогов, применение передовых технологий в своей деятельности, состояние оборудования и т.п. Колеблемость характерна практически для всех природный явлений и граней общественной жизни. Однако имеются и неварьируемые показатели, которые образуются в случае фиксации тех или иных явлений в правовых актах. Например, не может варьировать количество генеральных директоров у предприятия, согласно законодательству он должен быть один. Такие неварьирующие объекты, как правило, не являются предметом или объектом статистического исследования. В нашей жизни колеблемость признаков выступает важным фактором, оказывающим на нее влияние. Например, изменение гаммы типоразмеров деталей позволяет сформировать оптимальный ассортимент, но при этом высокий уровень вариации в рамках одного типоразмера говорит о высоком уровне брака и необходимости внедрения соответствующих мероприятий. Значительный уровень вариации товарооборота или цен может свидетельствовать о монополизации рынка или о плохом управлении запасами и требовать соответствующих мер и т.п. Сказанное позволяет утверждать, что в общественной жизни, которая с точки зрения статистики выступает массовой совокупностью, объективно присутствует изменчивость различных признаков и элементов, что диктует актуальность исследования данного явления с применением специальных показателей для формирования оптимальных методов управления им. Коэффициент вариации является одним из таких показателей. При этом он относится к группе относительных показателей вариации. Рассматриваемый коэффициент — это относительный показатель, характеризующий отношение среднего квадратического отклонения к средней величине изучаемого признака, и выражается, как правило, в процентах. В указанном критерии отражается соотношение уровня влияния факторов, которые приводят к возникновению колеблемости, и общих условий всех элементов совокупности, которые порождают типическую величину признака — его среднее значение. Коэффициент вариации применяется для изучения степени изменчивости различных признаков одной и той же совокупности и изменчивости в различных совокупностях, которые обладают разными значениями средних величин.

Формула расчета коэффициента вариации

Являясь отношением среднего квадратического отклонения к средней величине, в общем случае анализируемый показатель вычисляется по следующей формуле:

Формула расчета коэффициента вариации

где σ — среднее квадратическое отклонение;

х — среднее значение исследуемого показателя.

Вычисление рассматриваемого показателя посредством расчета отклонений от средней величины отражает его объективное содержание, но его получение достаточно трудоемко, и для повышения точности выводов требуются расчеты среднего показателя и отклонений без округлений или со значительным количеством цифр после запятой. Поэтому в практических вычислениях делимое может быть вычислено с использованием другой, полученной из общей, формуле вычисления среднего квадратического отклонения в форме разности среднего квадрата элемента и квадрата среднего значения. Таким образом, формула расчета исследуемого показателя, дающая более точный результат, выглядит следующим образом:

Формула расчета точного значения коэффициента вариации

Пример расчета коэффициента вариации

Приведем пример расчета коэффициента вариации цены. Исходные данные для вычисления коэффициента вариации и необходимые промежуточные расчеты приведены в таблице:

№ предложения цены Значение цены, руб., х (xi — хсреднее) 2
1 17,74 3,8
2 13,69 4,41
3 16 0,04
4 11,87 15,37
5 11,21 20,98
6 15,09 0,49
7 19,49 13,69
8 19,97 17,47
9 17,03 1,54
Итого 142,09 77,79

Для вычисления используем следующую формулу:

Определим средне значение: хсреднее = (17,74 + 13,69 + 16 + 11,87 + 11,21 + 15,09 + 19,49 + 19,97 + 17,03) / 9 = 15,79 руб.

Среднее квадратическое отклонение: σ = √(77,79 / 9) = 2,94.

Коэффициент вариации: ν = 2,94 / 15,79 * 100 = 18,62%.

Интерпретация. Полученное значение исследуемого показателя показывает, что колеблемость цены относительно небольшая и составляет 18,62% среднего уровня. Полученное значение также указывает на однородность исследуемой совокупности, т.к. полученное значение коэффициента вариации менее 33%.

Внимание! Расчет коэффициента вариации по 44 ФЗ имеет свои особенности, поэтому приводим отдельный пример расчета коэффициента вариации по 44 ФЗ

Онлайн калькулятор расчета коэффициента вариации

В заключении приводим небольшой онлайн калькулятор расчета коэффициента вариации онлайн, используя который, Вы можете самостоятельно выполнить расчет указанного показателя онлайн. При заполнении формы калькулятора расчета коэффициента вариации онлайн внимательно соблюдайте размерность полей, что позволит выполнить вычисления онлайн быстро и точно. Дробные величины должны вводиться с точкой, а не с запятой! В форме онлайн калькулятора уже содержатся данные условного примера, чтобы пользователь мог посмотреть, как работает онлайн калькулятор расчета коэффициента вариации. Для расчета данного показателя по своим данным просто внесите их в соответствующие поля формы онлайн калькулятора и нажмите кнопку «Выполнить расчет». Обратите внимание, что расчет коэффициента вариации онлайн калькулятором осуществляется только по несгруппированным данным.

Онлайн-калькулятор расчета коэффициента вариации:

Источник

Читайте также:  Raiden network token криптовалюта
Оцените статью