Как рассчитать ожидаемую доходность ценной бумаги

Как рассчитать ожидаемую доходность ценной бумаги

Управление портфелем ценных бумаг

Ожидаемая доходность портфеля

Главными параметрами управления портфелем ценных бумаг, которые необходимо определить, являются ожидаемая доходность и риск. Формируя портфель, невозможно точно определить будущую динамику его доходности и риска, поэтому инвестиционный выбор основывается на ожидаемых значениях доходности и риска. Данные величины оцениваются, в первую очередь, на основе статистической информации за предыдущие периоды времени. Так как будущее вряд ли повторит прошлое со 100%-ой вероятностью, то полученные оценки можно корректировать согласно своим ожиданиям развития конъюнктуры.

Ожидаемая доходность портфеля рассчитывается на основе ожидаемой доходности активов.Ожидаемая доходность активов определяется двумя способами. Первый состоит в том, чтобы на основе прошлых данных статистики доходности актива рассчитать ее среднеарифметическое значение по формуле: где D — ожидаемая доходность актива, r — фактическая доходность актива в i-м периоде, n — число периодов наблюдения (периоды имеют одинаковую продолжительность).

Пример. Данные о доходности актива за прошедшие 9 лет представлены в таблице.

Ожидаемая доходность актива в расчете на год равна:

Второй подход заключается в учете возможного будущего вероятностного распределения доходности актива. Ожидаемая доходность актива в этом случае определяется как среднеарифметическая взвешенная, где весами выступают вероятности каждого события. В сумме все возможные варианты событий должный составлять 100%. Формулу ожидаемой доходности в этом случае: где r — ожидаемая доходность актива для i-го события, p — вероятность наступления i-го события.

Пример. Инвестор полагает, что в будущем году можно ожидать следующего вероятностного распределения доходности акции.

Ожидаемая доходность бумаги равна:

Портфель, формируемый инвестором, состоит из нескольких ценных бумаг, каждая из которых обладает своей ожидаемой доходностью. Ожидаемая доходность портфеля определяется как средневзвешенная ожидаемая доходность входящих в него бумаг: где Dр — ожидаемая доходность портфеля, r — ожидаемая доходность ценных бумаг, d — удельный вес в портфеле соответствующей ценной бумаги. Удельный вес ценной бумаги в портфеле рассчитывается как отношение ее стоимости к стоимости всего портфеля.

Пример. Портфель состоит из двух бумаг А и В. Стоимоть бумаги А составляет 300 руб., В — 700 руб. Определим ожидаемую доходность портфеля.

Стоимость портфеля равна
Удельные веса бумаг в портфеле составляют:
Ожидаемая доходность портфеля равна:

Таким образом, если инвестор объединяет в портфеле две бумаги, то значение ожидаемой доходности портфеля будет располагается между значениями ожидаемых доходностей первой и второй бумаг.

Содержание рассылки зависит и чем активнее Вы проявляете свою заинтересованность или иной теме, задаете те или иные вопросы — тем полезнее рассылка будет Пишите

Источник

CFA — Ожидаемая доходность, ковариация и корреляция активов инвестиционного портфеля

Расчет и интерпретация ожидаемой доходности, дисперсии доходности, ковариации и корреляции активов инвестиционного портфеля являются фундаментальными навыками финансового аналитика. Рассмотрим эти концепции, — в рамках изучения количественных методов по программе CFA.

Современная теория инвестиционного портфеля часто использует идею о том, что инвестиционные возможности можно оценить с использованием ожидаемой доходности в качестве меры вознаграждения и дисперсии доходности в качестве меры риска.

Расчет и интерпретация ожидаемой доходности и дисперсии доходности портфеля являются фундаментальными навыками финансового аналитика. В этом разделе мы рассмотрим концепции ожидаемой доходности портфеля и дисперсии доходности.

Хотя в этом разделе мы коснемся ряда основных понятий, мы не будем разбирать портфельную теорию как таковую. Портфельная теория Марковица (англ. ‘mean-variance analysis’) будет рассматриваться в следующих чтениях.

Доходность портфеля определяется доходностью отдельных его составляющих. В результате расчет дисперсии портфеля как функция доходности отдельного актива является более сложным, чем расчет дисперсии, проиллюстрированный в предыдущем разделе.

Рассмотрим пример портфеля,

  • 50% которого инвестируются в фонд индекса S&P 500,
  • 25% — в фонд долгосрочных корпоративных облигаций США, и
  • 25% — в фонд индекса MSCI EAFE (представляющий рынки акций в Европе, Австралии и на Дальнем Востоке).
Читайте также:  Группе дисконтированных показателей эффективности инвестиций

Таблица 5 показывает это распределение.

Таблица 5. Портфельные веса.

Долгосрочные корпоративные облигации США

Сначала рассмотрим расчет ожидаемой доходности портфеля. В предыдущем разделе мы определили ожидаемое значение случайной величины как средневзвешенную вероятность возможных результатов случайной величины.

Мы знаем, что доходность портфеля — это средневзвешенная доходность ценных бумаг в портфеле. Аналогично, ожидаемая доходность портфеля представляет собой средневзвешенную величину ожидаемой доходности ценных бумаг в портфеле с использованием точно таких же весов.

Когда мы оценили ожидаемую доходность отдельных ценных бумаг, мы сразу же получили ожидаемую доходность портфеля. Этот удобный факт вытекает из свойств ожидаемого значения.

Свойства ожидаемого значения.

Пусть \( w_i \) — любая постоянная величина (константа), а \( R_i \) — случайная величина.

1. Ожидаемое значение постоянной величины, умноженной на случайную величину, равно постоянной, умноженной на ожидаемое значение случайной величины.

2. Ожидаемое значение взвешенной суммы случайных величин равно взвешенной сумме ожидаемых значений с использованием тех же весов.

\( E (w_1R_1 + w_2R_2 + \ldots + w_nR_n) \)
\(= w_1E (R_1) + w_2E(R_2) + . + w_nE(R_n) \)
(формула 13)

Предположим, у нас есть случайная величина с заданным ожидаемым значением. Например, если мы умножим каждый результат на 2, ожидаемое значение случайной величины умножится также на 2. В этом смысл части 1.

Второе утверждение — это правило, которое напрямую приводит к выражению ожидаемой доходности портфеля.

Портфель с n ценными бумагами определяется весами его портфеля, \( w_1, w_2, \ldots, w_n \), которые в сумме составляют 1. Таким образом, доходность портфеля, \( R_p \), равна \( R_p = w_1R_1 + w_2R_2 + \ldots + w_nR_n \).

Теперь мы можем сформулировать следующий принцип:

Расчет ожидаемой доходности портфеля.

Для портфеля с n ценными бумагами ожидаемая доходность портфеля представляет собой средневзвешенную ожидаемую доходность по включенным в него ценным бумагам:

\( \begin E(R_p) &= E(w_1R_1 + w_2R_2 + \ldots + w_nR_n) \\ &= w_1E(R_1) + w_2E(R_2) + \ldots + w_nE (R_n) \end \)

Предположим, мы оценили ожидаемую доходность активов в портфеле, как показано в Таблице 6.

Таблица 6. Веса и ожидаемая доходность активов в портфеле.

Долгосрочные корпоративные облигации США

Мы рассчитываем ожидаемую доходность портфеля как 11.75%:

\( \begin E(R_p) &= w_1E(R_1) + w_2E(R_2) + w_3E (R_3) \\ &= 0.50(13\%) + 0.25(6\%) + 0.25(15\%) = 11.75\% \end \)

В предыдущем разделе мы изучали дисперсию как меру рассеивания результатов вокруг ожидаемого значения. Здесь нас интересует дисперсия доходности портфеля как мера инвестиционного риска.

Если \( R_p \) обозначает доходность портфеля, то дисперсия доходности портфеля составляет \( \sigma^2(R_p) = E \Big\ < \big[R_p - E(R_p)\big]^2 \Big\>\) в соответствии с Формулой 8.

Как можно использовать это определение на практике?

В чтении о статистических концепциях и рыночной доходности мы узнали, как рассчитать историческую или выборочную дисперсию на основе выборки ставок доходности.

Теперь мы рассматриваем дисперсию в прогностическом смысле. Мы будем использовать информацию об отдельных активах в портфеле, чтобы получить доходность всего портфеля.

Чтобы избежать беспорядка в обозначениях, мы пишем \( ER_p \) вместо \(E(R_p)\). Нам нужна концепция ковариации.

Определение ковариации.

Для двух случайных величин \(R_i\) и \(R_j\) ковариация между \(R_i\) и \(R_j\) равна

\( \textrm \big(R_i, R_j\big) = E \big[(R_i — ER_i) (R_j — ER_j)\big] \)

(Формула 14)

Альтернативными обозначениями являются \(\sigma(R_i,R_j)\) и \(\sigma_\).

Формула 14 утверждает, что ковариация (англ. ‘covariance’) между двумя случайными переменными является средневзвешенной вероятностью для перекрестных произведений отклонения каждой случайной переменной от ее собственного ожидаемого значения.

Используя определением дисперсии, мы находим:

\( \begin &= E \big[w_1w_1(R_1 — ER_1)(R_1 — ER_1) + w_1w_2(R_1 — ER_1)(R_2 — ER_2) \\ &+ w_1w_3(R_1 — ER_1)(R_3 — ER_3) + w_2w_1(R_2 — ER_2)(R_1 — ER_1) \\ &+ w_2w_2(R_2 — ER_2)(R_2 — ER_2) + w_2w_3(R_2 — ER_2)(R_3 — ER_3) \\ &+ w_3w_1(R_3 — ER_3)(R_1 — ER_1) + w_3w_2(R_3 — ER_3)(R_2 — ER_2) \\ &+ w_3w_3(R_3 — ER_3)(R_3 — ER_3) \big] \end \)
(выполняем умножение)

\( \begin &= w^1_2E \big[(R_1 — ER_1)^2 \big] + w_1w_2E \big[(R_1 — ER_1) (R_2 — ER_2) \big] \\ &+ w_1w_3E \big[(R_1 — ER_1) (R_3 — ER_3) \big] + w_2w_1E \big[(R_2 — ER_2) (R_1 — ER_1) \big] \\ &+ w^2_2E \big[(R_2 — ER_2)^2 \big] + w_2w_3E \big[(R_2 — ER_2) (R_3 — ER_3) \big] \\ &+ w_3w_1E \big[(R_3 — ER_3) (R_1 — ER_1) \big] + w_3w_2E \big[(R_3 — ER_3) (R_2 — ER_2) \big] \\ &+ w^2_3E \big[(R_3 — ER_3)^2 \big] \end \)

(напомим, что \(w_i\) являются постоянными величинами)

\( \begin &= w^2_1 \sigma^2 (R_1) + w_1w_2 \textrm (R_1, R_2) + w_1w_3 \textrm (R_1, R_3) \\ &+ w_1w_2 Cov(R_1, R_2) + w^2_2 \sigma^2 (R_2) + w_2w_3 \textrm (R_2, R_3) \\ &+ w_1w_3 Cov(R_1, R_3) + w_2w_3 Cov(R_2, R_3) + w^2_3 \sigma^2 (R_3) \end \)
(формула 15)

Последний шаг следует из определений дисперсии и ковариации.

Полезные факты о дисперсии и ковариации включают в себя следующее:

  1. Дисперсия постоянной величины (константы) умноженная на случайную величину равна квадрату константы умноженной на дисперсию случайной величины, или \( \sigma^2(wR) = w^2\sigma^2(R) \);
  2. Дисперсия константы плюс случайная величина равна дисперсии случайной величины, или \( \sigma^2(w + R) = \sigma 2(R)\), поскольку константа имеет нулевую дисперсию;
  3. Ковариация между константой и случайной величиной равна нулю.

Для выделенных курсивом ковариационных членов в Формуле 15 мы использовали тот факт, что порядок переменных в ковариации не имеет значения: например, \(\textrm(R_2,R_1) = \textrm(R_1,R_2) \).

Как мы покажем далее, диагональные дисперсионные члены \(\sigma^2(R_1)\), \(\sigma^2(R2)\) и \(\sigma^2(R_3)\) могут быть выражены как \(\textrm(R_1,R_1)\), \(\textrm(R_2,R_2)\) и \(\textrm(R_3,R_3)\), соответственно.

Опираясь на этот факт, можно вывести наиболее компактный вид Формулы 15:

\( \sigma^2(R_p) = \sum_^ <3>\sum_^<3>w_i w_j \textrm(R_i,R_j) \)

Знаки суммирования говорят: «Установите i = 1, и пусть j меняется от 1 до 3; затем установите i = 2 и пусть j меняется от 1 до 3; затем установите i = 3 и пусть j меняется от 1 до 3; наконец, добавьте девять членов».

Эту формулу можно использовать для портфеля любого размера n:

\( \sigma^2(R_p) = \sum_^ <3>\sum_^<3>w_i w_j \textrm(R_i,R_j) \)
(Формула 16)

Из Формулы 15 видно, что отдельные отклонения доходности составляют часть, но не все отклонения портфеля. Три отклонения фактически превосходят по численности шесть ковариационных членов вне диагонали. Для трех активов это соотношение составляет 1 к 2 или 50 процентов.

Если имеется 20 активов, то есть 20 дисперсионных слагаемых и 20(20) — 20 = 380 недиагональных ковариационных слагаемых. Отношение слагаемых дисперсии к недиагональным слагаемым ковариации составляет менее 6 к 100, или 6%. Таким образом, первое наблюдение заключается в том, что с увеличением числа активов портфеля ковариация становится все более важной, в остальном все не меняется.

Когда значение ковариации как «недиагональной ковариации» очевидно, как здесь, мы опускаем уточняющие слова. Ковариация обычно используется в этом смысле.

Как именно влияет ковариация на дисперсию доходности портфеля?

Члены ковариации показывают, как совместное движение доходности отдельных активов влияет на дисперсию всего портфеля.

Например, рассмотрим две акции: одна имеет тенденцию к высокой доходности (относительно ее ожидаемой доходности), а другая имеет низкую доходность (относительно ее ожидаемой доходности).

Доходность одной акции имеет тенденцию компенсировать доходность другой акции, снижая изменчивость или дисперсию доходности портфеля.

Как и дисперсию, значения ковариации трудно интерпретировать, и мы вскоре представим более интуитивно понятную концепцию. Между тем, из определения ковариации мы можем установить два существенных примечания о ковариации.

1. Мы можем интерпретировать ковариацию следующим образом:

  • Ковариация доходности отрицательна, когда доходность одного актива выше его ожидаемого значения, а доходность другого актива имеет тенденцию быть ниже его ожидаемого значения (средняя обратная зависимость между ставками доходности).
  • Ковариация доходности равна 0, если доходность активов не связана.
  • Ковариация доходности положительна, когда доходность обоих активов, как правило, находятся по одну сторону (выше или ниже) относительно ожидаемых значений в одно и то же время (средняя положительная зависимость между ставками доходности).

2. Ковариация случайной величины с самой собой (собственная ковариация) — это ее собственная дисперсия:

Полный список ковариаций составляет все статистические данные, необходимые для расчета дисперсии доходности портфеля. Ковариации часто представлены в табличном формате, который называется ковариационной матрицей (англ. ‘covariance matrix’).

В Таблице 7 показано, как вводятся расчетные значения в ковариационную матрицу для ожидаемой доходности и дисперсии доходности портфеля.

Таблица 7. Ожидаемая доходность и дисперсия портфеля — значения матрицы:

Для трех активов ковариационная матрица имеет \(3^2 = 3 \times 3 = 9 \) ячеек, но значения ячеек по диагонали (дисперсия) обычно рассчитываются отдельно от недиагональных ячеек. Эти диагональные значения выделены жирным шрифтом в Таблице 7.

Это различие естественно, так как дисперсия акций — это концепция с одной переменной. Таким образом, есть 9 — 3 = 6 ковариаций, исключая дисперсии.

Но \(\textrm(R_B,R_A) = \textrm(R_А,R_В)\), \( \textrm(R_С,R_A) = \textrm(R_B,R_A) \) и \( \textrm(R_С,R_B) = \textrm(R_B,R_C) \).

Ковариационная матрица под диагональю является зеркальным отображением ковариационной матрицы над диагональю. В результате, есть только 6/2 = 3 различных ковариационных члена для оценки. В целом, для n ценных бумаг существует \( n(n — 1)/2 \) различных ковариаций для оценки и n дисперсий для оценки.

Предположим, у нас есть ковариационная матрица, показанная в Таблице 8.

Мы будем работать с доходностью, указанной в процентах, а записи в таблице будут выражены в процентах в квадрате (% 2 ). Члены 38% 2 и 400% 2 равны 0.0038 и 0.0400 соответственно в десятичном виде; правильная работа в процентах и ​​десятичных дробях приводит к одинаковым ответам.

Таблица 8. Ковариационная матрица.

Долгосрочные корпоративные облигации США

Долгосрочные корпоративные облигации США

Если взять Формулу 15 и сгруппировать дисперсионные члены, мы получим следующее:

\( \begin \sigma^2(R_p) &= w_1^2 \sigma^2(R_2) + w_2^2 \sigma^2(R_2) + w_3^2 \sigma^2(R_3) + 2w_1w_2 \textrm(R_1,R_2) \\ &+ 2w_1w_3 \textrm(R_1,R_3) + 2w_2w_3 \textrm(R_2,R_3) \end \)
(Формула 17)

\( \begin &= (0.50)^2(400) + (0.25)^2(81) + (0.25)^2(441) \\ &+ 2(0.50)(0.25)(45) + 2(0.50)(0.25)(189) \\ &+ 2(0.25)(0.25)(38) \\ &= 100 + 5.0625 + 27.5625 + 11.25 + 47.25 + 4.75 = 195.875 \end \)

Разница составляет 195.875. Стандартное отклонение доходности составляет 195.875 1/2 = 14%. В итоге, ожидаемая годовая доходность портфеля составляет 11.75%, а стандартное отклонение доходности — 14%.

Давайте посмотрим на первые три члена в приведенном выше расчете. Их сумма, 100 + 5.0625 + 27.5625 = 132.625, является вкладом отдельных дисперсий активов в общую дисперсию портфеля. Если бы доходность по трем активам была независимой, ковариации были бы равны 0, а стандартное отклонение доходности портфеля составило бы 132.625 1/2 = 11.52% по сравнению с 14% ранее.

Портфель будет иметь меньший риск. Предположим, что члены ковариации были отрицательными. Тогда к 132.625 будет добавлено отрицательное число, поэтому дисперсия портфеля и риск будут еще меньше.

В то же время мы не изменили ожидаемую доходность. При той же ожидаемой доходности портфеля, портфель имеет меньший риск. Это снижение риска является преимуществом диверсификации, что означает снижение риска от владения портфелем активов.

Преимущество диверсификации увеличивается с уменьшением ковариации.

Это наблюдение является ключевым понятием современной теории портфеля. Это станет еще более интуитивно понятно, когда мы рассмотрим концепцию корреляции. Тогда мы сможем сказать, что до тех пор, пока ставки доходности акций портфеля не имеют абсолютно положительной корреляции, возможны преимущества диверсификации.

Кроме того, чем меньше корреляция между доходностью акций, тем выше стоимость отказа от диверсификации (с точки зрения упущенных выгод от снижения риска), при прочих равных условиях.

Определение корреляции.

Корреляция (англ. ‘correlation’) между двумя случайными величинами, \(R_i\) и \(R_j\), определяется как:

\( \rho(R_i,R_j) = \ <\mathrm(R_i, R_j) \over \sigma(R_i)\sigma(R_j)> \).

Альтернативными обозначениями корреляции являются \(\textrm(R_i,R_j) \) и \( \rho_\).

Ковариация часто представляется с использованием выражения:

\( \textrm(R_i, R_j) = \rho(R_i,R_j) \sigma(R_i)\sigma(R_j) \)

Деление, указанное в определении, делает корреляцию чистым числом (т.е. без единицы измерения) и устанавливает границы для ее наибольшего и наименьшего возможных значений.

Используя приведенное выше определение, мы можем сформулировать корреляционную матрицу только на основе данных из ковариационной матрицы. В Таблице 9 показана матрица корреляции.

Источник

Читайте также:  Самый надежный инструмент для инвестиций
Оцените статью