Анализ операций с ценными бумагами с Microsoft Excel
3.2 Анализ краткосрочных бескупонных облигаций
Как уже отмечалось в предыдущей главе, бескупонные облигации – это дисконтные ценные бумаги, которые размещаются ниже номинала.
В разное время отечественный рынок краткосрочных бескупонных облигаций был представлен государственными, республиканскими (субъектов федерации) и муниципальными ценными бумагами, со сроками обращения 3, 6, 9 и 12 месяцев. При этом наиболее надежными, ликвидными и безрисковыми считаются ценные бумаги, представляющие собой краткосрочный государственный долг , т.е. долг правительства юридическим и физическим лицам. Кроме того, в большинстве стран инвестиции в государственные обязательства предполагают получение различных налоговых льгот.
Характерными примерами подобных ценных бумаг являются трехмесячные казначейские векселя (treasury bills) федерального правительства США и государственные краткосрочные обязательства России (ГКО), выпускаемые в бездокументарной форме.
3.2.1 Доходность краткосрочных бескупонных облигаций
Поскольку бескупонные облигации всегда реализуются с дисконтом, норма доходности, которую получит инвестор, зависит от разницы между уплаченной ценой (ценой покупки – Р ) и номиналом N (ценой погашения). Так как номинал облигации всегда известен (или может быть принят за 100%), для определения доходности операции достаточно знать две величины – цену покупки P (либо курс К ) на дату проведения операции и срок до погашения в днях – t .
Доходность краткосрочного обязательства – Y
Как правило, расчет доходности краткосрочных облигаций осуществляется по формуле простых процентов в виде годовой ставки Y . В этом случае, формула для определения доходности краткосрочного обязательства может иметь следующий вид:
, (3.16)
где t – число дней до погашения; Р – цена покупки; N – номинал; К – курсовая стоимость; В = <360, 365 или 366>– используемая временная база (360 для обыкновенных процентов; 365 или 366 для точных процентов).
Краткосрочное обязательство со сроком погашения 90 дней было приобретено по цене 98,22 от номинала. Определить доходность операции для инвестора:
а) с использованием обыкновенных процентов
, или 7,2%
б) с использованием точных процентов
, или 7,22%.
В зарубежной практике рассчитываемый по формуле (3.16) показатель Y также часто называют эквивалентным купонным доходом . Как следует из названия, этот показатель представляет собой годовую купонную ставку по долгосрочной облигации, соответствующую доходности краткосрочного обязательства.
Доходность краткосрочного обязательства к погашению Y можно также рассматривать в качестве цены займа для его эмитента. Таким образом, стоимость заемных средств для государственной казны в примере 3.1 составит 7,22% (7,2%).
Как уже отмечалось, для государственных краткосрочных обязательств могут быть предусмотрены различные налоговые льготы.
Это важнейшее обстоятельство учитывает формула доходности ГКО к погашению, рассчитываемая по официальной методике ЦБР :
, (3.17)
где P – средневзвешенная цена аукциона (либо цена закрытия, т.е. последняя цена сделки на торгах); Т – условная ставка налога .
Вычисленная по методике ЦБР доходность к погашению обязательства из предыдущего примера составит:
0,722 ´ 1 / (1 — 0,35) = 0,096 или 9,6%.
Включение с мая 1993 года налоговых льгот в расчет доходности ГКО играло роль своеобразной рекламы и было призвано привлечь внимание инвесторов к молодому и неокрепшему на тот момент рынку облигаций. В настоящее время этот показатель в значительной мере утратил свое значение и представляет ценность лишь как экономический индикатор, характеризующий взаимосвязь между состоянием рынка государственных ценных бумаг и процентными ставками по межбанковским кредитам (МБК).
Следует отметить, что рассчитываемые по формулам (3.16 – 3.17) показатели имеют, по крайней мере, два недостатка:
не могут быть использованы для сравнения эффективности проведения краткосрочных операций с другими видами инвестиций, в т.ч. – долгосрочными;
Для преодоления указанных ограничений используют более универсальный показатель – эффективная доходность.
Эффективная доходность краткосрочного обязательства – YTM
В случае возможности неоднократного реинвестирования полученных доходов возникает необходимость в использовании показателя, адекватно отражающего общую эффективность проводимых операций. Очевидно, что более корректно предположение о многократном реинвестировании учитывает формула наращения по сложным процентам.
В этой связи для расчета доходности краткосрочного обязательства может быть использована следующая формула:
, (3.18)
где t – число дней до погашения; Р – цена покупки; N – номинал; В = <360, 365 или 366>– используемая временная база.
Осуществим расчет доходности YTM для краткосрочного обязательства из примера 3.1:
YTM = (100 / 98,22) 365/90 -1 = 0,075 или 7,5%.
В отечественной практике данный показатель получил название эффективной доходности . В публикуемых финансовых сводках и аналитических обзорах для его обозначения используется принятая во всем мире и уже знакомая нам по прошлой главе аббревиатура YTM (yield to maturity) .
Рассчитываемый по формуле сложных процентов, показатель YTM может быть использован для сравнения эффективности проводимых операций с ценными бумагами, имеющими различные сроки погашения.
В случае, если краткосрочная бескупонная облигация приобретается с целью последующей реализации (т.е. для проведения арбитражных операций), ее доходность определяется ценами и сроками купли-продажи:
, (3.19)
, (3.20)
где P 1 – цена покупки в момент t = 1; P 2 – цена перепродажи в момент t = 2; t 1 – число дней до погашения в момент покупки; t 2 – число дней до погашения в момент перепродажи.
3.2.2 Оценка стоимости краткосрочных бескупонных облигаций
Процесс оценки стоимости краткосрочной бескупонной облигации заключается в определении современной величины элементарного потока платежей по формуле простых процентов, исходя из требуемой нормы доходности (рыночной ставки) Y .
С учетом используемых обозначений, формула текущей стоимости (цены) подобного обязательства будет иметь следующий вид:
. (3.21)
Поскольку номинал бескупонной облигации принимается за 100%, ее курсовая стоимость равна:
. (3.22)
Какую цену заплатит инвестор за бескупонную облигацию с номиналом в 100,00 и погашением через 90 дней, если требуемая норма доходности равна 12%?
100 / (1 + 0,12 ´ 90/365) = 97,12.
Из приведенных соотношений следует, что фундаментальные взаимосвязи между ценой и доходностью, рассмотренные в предыдущей главе, справедливы и для краткосрочных облигаций. Таким образом, цена краткосрочного обязательства Р связана обратной зависимостью с рыночной ставкой (нормой доходности) Y и сроком до погашения t .
В случае, если бумага приобретается для проведения арбитражных операций, цена сделки P 2 , обеспечивающая получение требуемой нормы доходности Y , определяется из следующего соотношения:
, (3.23)
где P 1 – цена покупки в момент t = 1; t 1 – число дней до погашения в момент покупки; t 2 – число дней до погашения в момент перепродажи.
3.2.3 Автоматизация анализа краткосрочных бескупонных облигаций
Для автоматизации анализа краткосрочных облигаций в ППП EXCEL реализована специальная группа из 6 функций (табл. 3.1). Все функции данной группы являются дополнительными.
Таблица 3.1
Функции для анализа краткосрочных финансовых операций.
Наименование функции
Формат функции
Англоязычная версия
Русифицированная
версия
TBILLYIELD
ДОХОДКЧЕК
ДОХОДКЧЕК(дата_согл; дата_вступл_в_силу; цена)
TBILLPRICE
ЦЕНАКЧЕК
ЦЕНАКЧЕК(дата_согл; дата_вступл_в_силу; скидка)
РАВНОКЧЕК
РАВНОКЧЕК(дата_согл; дата_вступл_в_силу; скидка)
СКИДКА(дата_согл; дата_вступл_в_силу; цена; погашение; [базис])
YIELDDISC
ДОХОДСКИДКА
ДОХОДСКИДКА(дата_согл; дата_вступл_в_силу; цена; погашение; [базис])
PRICEDISC
ЦЕНАСКИДКА
ЦЕНАСКИДКА(дата_согл; дата_вступл_в_силу; скидка; погашение; [базис])
Первые 4 функции этой группы исторически были реализованы для удобства проведения расчетов по операциям с краткосрочными казначейскими векселями правительства США. Функции используют следующие аргументы:
дата_согл – дата приобретения облигаций (дата сделки);
дата_вступл_в_силу – дата погашения облигации;
цена – цена покупки (в % к номиналу);
погашение – цена погашения (100 % от номинала);
скидка – эквивалентная доходности учетная ставка d ;
базис – временная база.
Последний аргумент » базис » не является обязательным, однако играет важнейшее значение, так как определяет временную базу и оказывает непосредственное влияние на точность вычислений. Список допустимых значений аргумента и соответствующие пояснения приведены в табл. 3.2.
Таблица 3.2
Допустимые значения аргумента » базис «
Значение
Тип начисления
US (NASD) 30/360
Фактический/фактический
Фактический/360
Фактический/365
Европейский 30/360
В российской практике аналогичными ценными бумагами являются государственные краткосрочные обязательства (ГКО). Однако проблема использования функций ДОХОДКЧЕК() и ЦЕНАКЧЕК() для анализа отечественных краткосрочных облигаций заключается в том, что в реализуемых ими формулах за временную базу принят обыкновенный или финансовый год (360 дней в году, 30 дней в месяце) тогда как в российской практике (в том числе, в официальных методиках ЦБР и МФ РФ) применяют точное число дней в году и в месяце (365/365).
Поскольку продолжительность подобных операций не превышает 360 дней, данная проблема решается достаточно простым путем – корректировкой полученных результатов на поправочные коэффициенты q = 365/360 и v = 360/365.
Продемонстрируем технику использования данных функций и обхода указанных выше проблем на примере, взятом из реальной практики отечественного рынка государственных краткосрочных облигаций (ГКО) .
Рассматривается возможность приобретения 3-х месячных ГКО серии N 21072. Средневзвешенная цена на 18/03/97 – 93,72. Дата погашения – 28/05/97 . Провести анализ этой операции.
Подготовьте ЭТ с исходными данными примера, как показано на рис. 3.1.
Рис. 3.1. ЭТ с исходными данными примера
Формулы для расчета поправочных множителей q и v в ячейках D5 и D6 имеют следующий вид:
Приступим к разработке шаблона для анализа краткосрочных бескупонных облигаций с использованием функций ДОХОДКЧЕК() , ЦЕНАКЧЕК() , СКИДКА() , РАВНОКЧЕК() .
Функция ДОХОДКЧЕК(дата_согл; дата_вступл_в_силу; цена)
Функция ДОХОДКЧЕК() вычисляет доходность облигации к погашению по простым процентам , т.е. величину Y. Однако как уже отмечалось, осуществляемый ею расчет предполагает использование обыкновенных, в отличие от принятых в отечественной практике точных процентов. Обход данной проблемы заключается в корректировке полученного результата на величину q = 365/360, рассчитанную в ячейке D5. С учетом вышеизложенного, формула, заданная в ячейке В13, будет иметь следующий вид:
=ДОХОДКЧЕК( В6; В7; В8) * D5 (Результат: 34,45%).
Определив величину Y мы можем легко рассчитать доходность операции по методике ЦБР, т.е. с учетом налоговых льгот:
Введите в ячейку B14: =B13*(1/(1-D8)) (Результат: 53,00%).
Функция СКИДКА() определяет величину учетной ставки d (ставки дисконта), соответствующей цене покупки облигации и эквивалентной ее доходности к погашению Y (ячейка В15):
=СКИДКА(B6;B7;B8;B9;D7) (Результат: 32,28%).
Отметим, что для получения точного результата здесь явно задан необязательный аргумент » базис » (ячейка D7), равный 3 (т.е. точное число дней по операции и фактическое число дней в году) . Возможность указания этого аргумента избавляет нас от необходимости вводить поправочные коэффициенты.
Обратите внимание также на то, что величина учетной (антисипатив-ной) ставки d меньше нормы доходности Y (декурсивной ставки).
Функция ЦЕНАКЧЕК(дата_согл; дата_вступл_в_силу; скидка)
Определив величину скидки (В15), мы можем легко вычислить курсовую цену облигации (ячейка B16):
=ЦЕНАКЧЕК(B6;B7;B15*D6) (Результат: 93,72).
Как и следовало ожидать, она равна цене покупке (т.е. средневзвешенной биржевой цене в данном случае). Обратите внимание на использование поправочного коэффициента v (ячейка D6) для корректировки величины скидки (ячейка В15). Необходимость подобной корректировки возникает вследствие разных временных баз, используемых при вычислении скидки (точные проценты) и цены (обыкновенные проценты), в силу алгоритма, реализуемого функцией ЦЕНАКЧЕК() .
Функция РАВНОКЧЕК(дата_согл; дата_вступл_в_силу; скидка)
Функция РАВНОКЧЕК() позволяет рассчитать показатель эквивалентного годового купонного дохода по известной величине ставки дисконта (ячейка В15). Этот показатель широко используется в практике США. Для нашего примера с учетом поправочного коэффициента v он будет равен (ячейка В17):
=РАВНОКЧЕК(B6;B7;B17*D6) (Результат: 34,45%).
Нетрудно заметить, что в случае использования точных процентов, возвращаемая функцией величина будет всегда равна доходности Y .
Вычисление эффективной доходности YTM осуществляется по сложным процентам , поэтому воспользоваться функциями для анализа краткосрочных финансовых операций для ее исчисления мы не можем.
Существуют два пути решения проблемы. Первый заключается в непосредственной реализации соотношения (3.18) средствами ППП EXCEL. С учетом размещения исходных данных, формула для вычисления YTM будет иметь следующий вид (ячейка В18):
=(B9/B8)^(365/(B7-B6)) -1 (Результат: 39,57%).
Второй способ основан на том, что эффективная доходность к погашению ценной бумаги представляет собой внутреннюю норму рентабельности данной инвестиции (т.е. показатель IRR ). Тогда для ее исчисления можно воспользоваться уже упоминавшейся в первой главе функция ЧИСТВНДОХ() , предварительно задав цену покупки в ячейке В8 со знаком минус (блок значений потока платежей согласно формату функции ЧИСТВНДОХ() должен начинаться с отрицательного числа, т.е. оттока средств):
=ЧИСТВНДОХ(B8.B9;B6.B7) (Результат: 39,57%).
Оба способа дают аналогичные результаты. Однако в случае использования функции ЧИСТВНДОХ() необходимо задавать цену покупки в ячейке В8 с отрицательным знаком, что в свою очередь приводит к необходимости указания данного аргумента со знаком минус в функциях ДОХОДКЧЕК() и СКИДКА() . С учетом вышеизложенного, для рассматриваемого способа вычисления YTM эти функции должны быть заданы в ячейках В13 и В15 следующим образом:
=СКИДКА(B6; B7; -B8; B9; D7) (Результат: 32,28%).
=ДОХОДКЧЕК( В6; В7; -В8) * D5 (Результат: 34,45%).
Вы можете выбрать любой способ расчета YTM , по своему усмотрению. Далее предполагается, что при формировании шаблона для расчета YTM в ячейке В18 было реализовано соотношение (3.18):
=(B9/B8)^(365/(B7-B6)) -1 (Результат: 39,57%).
Для полноты анализа в ячейке В19 рассчитано число дней, оставшихся до погашения ГКО этой серии, а в ячейке В20 – величина абсолютного дохода по данной операции.
Введите в ячейку В19: =В7-В6 (Результат: 71).
Введите в ячейку В20: =В9-В8 (Результат: 6,28).
Полученная в результате таблица должна соответствовать рис. 3.2.
Рис. 3.2. Решение примера 3.3
В табл. 3.3 приведен фрагмент итоговой сводки результатов сделок в системе единых межрегиональных торгов по ГКО за 18.03.97 г .
Таблица 3.3
Результаты торгов ГКО на 18.03.97
Источник