Анализ операций с ценными бумагами с Microsoft Excel
1.3.2 Денежные потоки в виде серии равных платежей (аннуитеты)
Поток платежей, все элементы которого распределены во времени так, что интервалы между любыми двумя последовательными платежами постоянны, называют финансовой рентой или аннуитетом (annuity).
Теоретически, в зависимости от условий формирования, могут быть получены весьма разнообразные виды аннуитетов: с платежами равной либо произвольной величины; с осуществлением выплат в начале, середине или конце периода и др. [13, 16]
В финансовой практике часто встречаются так называемые простые или обыкновенные аннуитеты (ordinary annuity, regular annuity), которые предполагают получение или выплаты одинаковых по величине сумм на протяжении всего срока операции в конце каждого периода (года, полугодия, квартала, месяца и.т.д.).
Выплаты по облигациям с фиксированной ставкой купона, банковским кредитам, долгосрочной аренде, страховым полисам, формирование различных фондов – все это далеко неполный перечень финансовых операций, денежные потоки которых, представляют собой обыкновенные аннуитеты. Рассмотрим их свойства и основные количественные характеристики.
Согласно определению, простой аннуитет обладает двумя важными свойствами:
1) все его n -элементов равны между собой: CF 1 = CF 2 . = CF n = CF ;
В отличии от разовых платежей, для количественного анализа аннуитетов нам понадобятся все выделенные ранее характеристики денежных потоков: FV , PV , CF , r и n .
Будущая стоимость простого (обыкновенного) аннуитета
Будущая стоимость простого аннуитета представляет собой сумму всех составляющих его платежей с начисленными процентами на конец срока проведения операции.
Методику определения будущей стоимости аннуитета покажем на следующем примере.
Финансовая компания создает фонд для погашения своих облигаций путем ежегодных помещений в банк сумм в 10000 под 10% годовых. Какова будет величина фонда к концу 4-го года?
FV 4 = 10000(1+0,10) 3 +10000(1+0,10) 2 +10000(1+0,10) 1 +10000 = 46410.
. (1.10)
Выполнив ряд математических преобразований над (1.10), можно получить более компактную запись:
. (1.11)
Как уже отмечалось ранее, платежи могут осуществляться j -раз в году (ежемесячно, ежеквартально и т.д.). Рассмотрим наиболее распространенный случай, когда число платежей в году совпадает с числом начислений процентов, т.е. j = m . В этом случае общее число платежей за n -лет будет равно mn , процентная ставка – r/m , а величина платежа – CF/m . Тогда, выполнив преобразования над (1.11), получим:
. (1.12)
Предположим, что каждый год ежемесячно в банк помещается сумма в 1000 . Ставка равна 12% годовых, начисляемых в конце каждого месяца. Какова будет величина вклада к концу 4-го года ?
Общее количество платежей за 4 года равно: 4 ´ 12 = 48. Ежемесячная процентная ставка составит: 12 / 12 = 1%. Тогда:
.
Процентная ставка, равная отношению номинальной ставки r к количеству периодов начисления m , называется периодической.
Следует отметить, что п ериодическая ставка процентов может использоваться в вычислениях только в том случае, если число платежей в году равно числу начислений процентов.
Текущая (современная) стоимость простого аннуитета
Под текущей величиной (стоимостью) денежного потока понимают сумму всех составляющих его платежей, дисконтированных на момент начала операции.
Определение текущей стоимости денежного потока, представляющего собой простой аннуитет, покажем на следующем примере.
Предположим, что мы хотим получать доход, равный 1000 в год, на протяжении 4-х лет. Какая сумма обеспечит получение такого дохода, если ставка по срочным депозитам равна 10% годовых?
PV = 1000/l,10 + 1000/(l,10) 2 + 1000/(l,10) 3 + 1000/(l,10) 4 = 3169,87.
Общее соотношение для определения текущей величины аннуитета имеет следующий вид:
. (1.13)
Нетрудно заметить, что выражения в квадратных скобках в (1.13) представляет собой множитель, равный современной стоимости аннуитета в 1 денежную единицу. Разделив современную стоимость PV денежного потока любого вида на этот множитель, можно получить величину периодического платежа CF эквивалентного ему аннуитета. Эта математическая зависимость часто используется в финансовом анализе для приведения потоков с неравномерными поступлениями к виду обыкновенного аннуитета.
Для случая, когда выплаты сумм аннуитета и начисления процентов совпадают во времени, т.е. j = m , удобно использовать соотношение вида:
. (1.14)
Исчисление суммы платежа, процентной ставки и числа периодов
Величину периодического платежа CF и числа периодов проведения операции n для обыкновенного аннуитета можно определить как из соотношения (1.9), так и (1.11).
Если известна будущая стоимость FV , при заданных n и r величина платежа может быть найдена из (1.11):
. (1.15)
При этом выражение в квадратных скобках часто называют коэффициентом погашения или накопления (sinking fund factor).
Соответственно если неизвестной величиной является n , она определяется по формуле:
. (1.16) В случае, если известна текущая стоимость аннуитета PV , формулы для определения CF и n примут следующий вид:
. (1.17)
. (1.18) Выражение в квадратных скобках в (1.17) называют коэффициентом восстановления или возмещения капитала (capital recovery factor).
Исчисление процентной ставки для денежных потоков в виде серии платежей представляет определенные сложности. Используемые при этом итерационные методы обеспечивают получение лишь приближенной оценки и не рассматриваются в настоящей работе. Как будет показано в дальнейшем, современные табличные процессоры позволяют без особых затруднений определять этот важнейший параметр любой финансовой операции. Автоматизация исчисления характеристик аннуитетов
Группу функций EXCEL, предназначенную для автоматизации расчетов характеристик аннуитетов, составляют уже хорошо известные вам функции БЗ() , КПЕР() , НОРМА() , ПЗ() (см. табл. 1.1), к которым добавляется функция определения периодического платежа – ППЛАТ() .
Функция ППЛАТ(ставка; кпер; нз; [бс]; [тип])
Данная функция применяется в том случае, если необходимо определить величину периодического платежа – CF .
Предположим, что в примере 1.11 требуется определить размер периодического платежа при заданной будущей величине фонда в 46410 .
=ППЛАТ(0,1; 4; 0; 46410) (Результат: -10000,00).
Для банка, в котором размещен данный депозит, периодические платежи означают приток средств, а конечная сумма по депозиту – расход:
=ППЛАТ(0,1; 4; 0; -46410) (Результат: 10000,00).
Обратите особое внимание на значение параметра «нз» ( PV ). Условиями данной операции наличие первоначальной суммы на депозите в момент времени t = 0 не предусмотрено, поэтому значение параметра «нз» равно нулю. Изменим условия примера 1.10 следующим образом.
Финансовая компания создает фонд для погашения обязательств путем помещения в банк суммы в 50000 , с последующим ежегодным пополнением суммами по 10000 . Ставка по депозиту равна 10% годовых. Какова будет величина фонда к концу 4-го года ?
=БЗ(0,1; 4; -10000; -50000) (Результат: 119615,00).
Соответственно изменится и формат функции для определения величины ежегодного платежа:
=ППЛАТ(0,1; 4; -50000; 119615) (Результат: -10000,00).
В случае, если условиями контракта предусмотрено начисление процентов в начале каждого периода , при исчислении любой характеристики финансовой операции необходимо задавать аргумент “ тип ”, равный 1.
Для предыдущего примера, функции вычисления будущей величины и периодического платежа будут иметь следующий вид:
=БЗ(0,1; 4; -10000; -50000; 1) (Результат: 124256,00).
=ППЛАТ(0,1; 4; -50000; 124256; 1) (Результат: -10000,00).
Отметим, что начисление процентов в начале каждого периода всегда приводит к большему значению будущей величины аннуитета за тот же срок .
При начислении процентов m -раз в году, величины r и n корректируются также, как и в предыдущих примерах.
Попробуйте самостоятельно построить шаблон для определения количественных характеристик денежных потоков, представляющих собой простой аннуитет. Его можно получить путем несложных преобразований предыдущего шаблона, воспользовавшись командами редактирования ППП EXCEL.
На рис. 1.7 приведен один из простейших вариантов подобного шаблона, который может быть взят за основу. Формулы шаблона приведены в табл. 1.3.
Источник
Глава 2. Потоки платежей, образующие финансовые ренты
Как вы помните из курса «Финансово-экономических расчетов», финансовой рентой называется поток платежей, все элементы которого распределены во времени так, что интервалы между любыми двумя последовательными платежами постоянны.
Рассмотрим свойства и основные характеристики финансовых рент.
Согласно определению рента обладает двумя основными свойствами:
все ее п элементов равны между собой: CFj = CF2 . = CFn = CF;
отрезки времени между выплатой/получением сумм CF одинаковы,
т.е. tn — tn-1. . t2 — t1.
При анализе финансовых рент основное внимание уделяется рассчету двух показателей: Приведенного (дисконтированного) значения ренты (аннуитета) и Будущей стоимости финансовой ренты. Будущая стоимость аннуитета представляет собой сумму всех составляющих его платежей с начисленными процентами на конец срока проведения операции.
Методику определения будущей стоимости аннуитета покажем на следующем примере. Финансовая компания создает фонд для погашения своих облигаций путем ежегодных помещений в банк сумм в 10 000 ден.ед. под 10% годовых. Какова будет величина фонда к концу четвертого года?
FV4 = 10 000(1 + 0,10)3+10 000(1 + 0,10)2 + 10 000(1 + 0,10)1+10 000 = 46 410 (5)
Для n периодов в общем виде соотношение принимает вид:
Как отмечалось выше, платежи могут осуществляться j раз в году (ежемесячно, ежеквартально и т.д.). Рассмотрим наиболее распространенный случай, когда число платежей в году совпадает с числом начислений процентов, т. е. j = m. В этом случае общее число платежей за n лет будет равно mn, процентная ставка — r/m, а величина платежа — CF/m.
Предположим, что каждый год ежемесячно в банк помещается сумма в 1 000 ден.ед. Ставка равна 12% годовых, начисляемых в конце каждого месяца. Какова будет величина вклада к концу четвертого года? Общее количество платежей за 4 года равно: 4×12 = 48. Ежемесячная процентная ставка составит: 12 / 12 = 1% . Тогда: FV4,12 = 61 222,61.
Процентная ставка, равная отношению номинальной ставки — к количеству периодов начисления m, называется периодической.
Следует отметить, что периодическая ставка процентов может использоваться в вычислениях только в том случае, если число платежей в году равно числу начислений процентов.
Текущая (современная) стоимость простого аннуитета
Под текущей величиной (стоимостью) денежного потока понимают сумму всех составляющих его платежей, дисконтированных на момент начала операции. Определение текущей стоимости денежного потока, представляющего собой простой аннуитет, покажем на следующем примере.
Предположим, что мы хотим получать доход, равный 1 000 ден.ед. в год, на протяжении четырех лет. Какая сумма обеспечит получение такого дохода, если ставка по срочным депозитам равна 10% годовых?
PV= 1000/1,10 + 1000/(1,10)2 + 1000/(1,10)3+ 1000/(1,10)4= 3169,87.
Общее соотношение для определения текущей величины аннуитета имеет вид:
PVn = CF х (1 + r) -1 (8)
Величину периодического платежа CF и числа периодов проведения операции n для обыкновенного аннуитета можно определить как из соотношения (7), так и (8).
Для автоматизации расчетов, связанных с финансовыми рентами используются рассмотренные ранее функции: БС, ПС, СТАВКА, КПЕР, ПЛТ. Остановимся подробнее на функции ПЛТ. Данная функция применяется, если необходимо определить величину периодического платежа CF. Предположим, что требуется определить размер периодического платежа при заданной будущей величине фонда в $46 410, ставке 10% и сроке 4 года
=ПЛТ(0,1; 4; 0; 46 410) (Результат: — 10 000,00)
Обратите особое внимание на значение параметра нз (PV). Условиями данной операции наличие первоначальной суммы на депозите в момент времени t = 0 не предусмотрено, поэтому значение параметра нз равно нулю.
Изменим условия примера: финансовая компания создает фонд для погашения обязательств путем помещения в банк суммы в 50 000 ден.ед. с последующим ежегодным пополнением суммами по 10 000 ден.ед. Ставка по депозиту равна годовых. Какова будет величина фонда к концу 4 — го года ?
=БС(0,1; 4; — 10 000; — 50 000) (Результат: 119 615,00).
Соответственно изменится и формат функции для определения величины ежегодного платежа:
=ПЛТ(0,1; 4; — 50 000; 11 9615) (Результат: — 10 000,00).
Если условиями контракта предусмотрено начисление процентов в начале каждого периода, при исчислении любой характеристики финансовой операции необходимо задавать аргумент тип, равный 1.
Для предыдущего примера функции вычисления будущей величины и
=БС(0,1; 4; — 10 000; — 50 000; 1) | (Результат: 124 256,00). |
=ПЛТ(0,1; 4; — 50 000; 124 256; 1) | (Результат: — 10 000,00). |
Отметим, что начисление процентов в начале каждого периода всегда приводит к большему значению будущей величины аннуитета за тот же срок.
При начислении процентов m раз в году величины r и n корректируются так же, как и в предыдущих примерах.
Постройте самостоятельно шаблон для определения количественных характеристик денежных потоков, представляющих собой простой аннуитет. Например так, как показано на рисунке:
Год-тгяя процентная стзвка г* Количество начислений в гаде ш * Срок проведения операции (леї) п- Начальное значение PV — Судуцв* значение FV- Пврмоднчecu*и п.патв* CF
0,00 1.0Ц 0,00 ІДІ! 0,00 0,00 G
ИД Тип начислений^ илні)-
Будущая величина FV —
Л ер и и дическай првне нтн ая ставка г — Годовал процентиал станса f — общее число периодов нр омде нил пат — Сив раненная величина PV —
Источник