- Бета-коэффициент портфеля
- Формула
- Пример расчета
- Интерпретация
- Бета-коэффициент | Beta
- Интерпретация бета-коэффициента
- Пример расчета
- Коэффициент бета. Формула. Расчет в Excel для ОАО “Газпром”. Современные модификации
- Инфографика: Коэффициент бета
- Коэффициент бета. Определение
- Формула расчета коэффициента бета
- Анализ уровня риска по значению коэффициента бета (β)
- Данные для построения коэффициента бета информационными компаниями
- Коэффициент бета в модели оценки капитальных активов – CAPM
- Пример расчета коэффициента бета в Excel
- Недостатки использования коэффициента бета в модели CAPM
- Модификация коэффициента бета
- Коэффициент бета для акций США
- Где посмотреть коэффициент бета для российских акций
Бета-коэффициент портфеля
Современные концепции инвестирования решают две задачи: снижение диверсифицируемого риска и увеличение ожидаемой доходности. Их решение лежит в плоскости формирования портфеля, который будет включать не одну, а множество ценных бумаг, что позволит диверсифицировать риски. Тем не менее, осуществление инвестиций в такой портфель предполагает определенный уровень риска, мерой которого является бета-коэффициент портфеля. Этот показатель будет напрямую зависеть от уровня риска, присущего инвестированию в каждую из ценных бумаг, входящих в такой портфель.
Формула
Формула расчета бета-коэффициента портфеля учитывает бета-коэффициент каждой из ценных бумаг, а также их удельный вес:
где wi – удельный вес i-ой ценной бумаги в портфеле;
βi— бета-коэффициент i-ой ценной бумаги;
n – количество ценных бумаг в портфеле.
Пример расчета
Инвестор сформировал портфель ценных бумаг из акций трех компаний, историческая доходность которых, а также историческая доходность рыночного портфеля, представлена в таблице.
При этом удельный вес акций Компании А в портфеле составляет 40%, акций Компании Б 30% и акций Компании В 30%.
Ожидаемая доходность акций Компании А составит 8,712%, Компании Б 18,162%, Компании В 14,876%, рыночного портфеля 10,497%.
А= (7,30+7,77+7,93+8,65+8,78+8,55+8,32+9,01+9,88+10,93)/10 = 8,712%
Б= (12,85+14,26+17,23+16,51+17,98+18,53+21,45+19,62+20,78+22,41)/10 = 18,162%
В= (11,77+12,93+13,74+13,12+14,56+15,46+16,78+16,21+16,98+17,21)/10 = 14,876%
= (8,95+9,36+9,01+9,75+10,45+10,32+11,23+11,89+11,35+12,66)/10 = 10,497%
Ожидаемая доходность портфеля, включающего акции этих трех компаний в указанной пропорции, составит 13,396%.
p= 0,4*8,712+0,3*18,162+0,3*14,876 = 13,396%
Чтобы рассчитать бета-коэффициент портфеля, необходимо рассчитать бета-коэффициент каждой из акций. Для акций Компании А он составит 0,72, для акций Компании Б 2,16 и для акций Компании В 1,39. (О том, как рассчитать бета-коэффициент акций можно прочитать здесь)
Подставив полученные результаты в приведенную выше формулу рассчитаем бета-коэффициент портфеля, который составит 1,35.
Интерпретация
Интерпретация значения бета-коэффициента портфеля ценных бумаг такая же, как и для отдельной ценной бумаги.
- β 1 – риски, связанные с инвестирование в портфель ценных бумаг, выше чем при инвестировании в рыночный портфель, а их доходность демонстрирует однонаправленное движение.
Источник
Бета-коэффициент | Beta
В портфельной теории бета-коэффициент (англ. Beta, β) является показателем, который характеризует риск, привносимый в рыночный портфель отдельной акцией. Чтобы рассчитать его значение необходимо воспользоваться следующей формулой:
Var (p) – вариация доходности портфеля (p).
В расширенном виде формулу для расчета бета-коэффициента можно записать следующим образом:
где ki – доходность ценной бумаги в i-ом периоде;
— ожидаемая (средняя) доходность ценной бумаги;
pi – доходность портфеля в i-ом периоде;
— ожидаемая (средняя) доходность портфеля.
n – количество наблюдений.
Интерпретация бета-коэффициента
β 1 – доходность акции и портфеля (индекса рынка) демонстрируют однонаправленное движение, при этом волатильность доходности акции выше волатильности доходности портфеля.
Пример расчета
Динамика доходности акций Компании А и Компании Б, а также динамика доходности портфеля представлены в таблице:
Ожидаемая доходность акций Компании А составит 4,986%, Компании Б 5,031% и портфеля 3,201%.
А = (5,93+5,85+5,21+5,37+4,99+4,87+4,70+4,75+4,33+3,86)/10 = 4,986%
Б = (4,25+4,47+4,68+4,71+4,77+5,25+5,45+5,33+5,55+5,85)/10 = 5,031%
= (2,27+2,39+3,47+3,21+2,95+2,97+3,32+3,65+3,97+3,81)/10 = 3,201%
Подставим полученные данные в приведенную выше формулу расчета бета-коэффициента.
βА = ((5,93-4,986)(2,27-3,201) + (5,85-4,986)(2,39-3,201) + (5,21-4,986)(3,47-3,201) + (5,37-4,986)(3,21-3,201) + (4,99-4,986)(2,95-3,201) + (4,87-4,986)(2,97-3,201) + (4,70-4,986)(3,32-3,201) + (4,75-4,986)(3,65-3,201) + (4,33-4,986)(3,97-3,201) + (3,86-4,986)(3,81-3,201)) / ((2,27-3,201) 2 + (2,39-3,201) 2 + (3,47-3,201) 2 + (3,21-3,201) 2 + (2,95-3,201) 2 + (2,97-3,201) 2 + (3,32-3,201) 2 + (3,65-3,201) 2 + (3,97-3,201) 2 + (3,81-3,201) 2 ) = -0,975
βБ = ((4,25-5,031)(2,27-3,201) + (4,47-5,031)(2,39-3,201) + (4,68-5,031)(3,47-3,201) + (4,71-5,031)(3,21-3,201) + (4,77-5,031)(2,95-3,201) + (5,25-5,031)(2,97-3,201) + (5,45-5,031)(3,32-3,201) + (5,33-5,031)(3,65-3,201) + (5,55-5,031)(3,97-3,201) + (5,85-5,031)(3,81-3,201)) / ((2,27-3,201) 2 + (2,39-3,201) 2 + (3,47-3,201) 2 + (3,21-3,201) 2 + (2,95-3,201) 2 + (2,97-3,201) 2 + (3,32-3,201) 2 + (3,65-3,201) 2 + (3,97-3,201) 2 + (3,81-3,201) 2 ) = 0,755
Итак, доходность акций Компании А демонстрирует разнонаправленное движение с доходностью рыночного портфеля, о чем свидетельствует отрицательное значение бета-коэффициента -0,975. При этом его абсолютное (по модулю) значение свидетельствует о том, что риск инвестирования в эти ценные бумаги практически равен рыночному (когда β = 1).
Доходность акций Компании Б, напротив, демонстрирует однонаправленное движение с доходностью рыночного портфеля, что подтверждает положительное значение бета-коэффициента. При этом риск инвестирования в эти ценные бумаги также ниже рыночного.
Источник
Коэффициент бета. Формула. Расчет в Excel для ОАО “Газпром”. Современные модификации
Разберем такой инвестиционный показатель как – коэффициент бета, рассчитаем его на реальном пример с помощью Excel и рассмотрим различные современные модификации.
Инфографика: Коэффициент бета
Оценка стоимости бизнеса | Финансовый анализ по МСФО | Финансовый анализ по РСБУ |
Расчет NPV, IRR в Excel | Оценка акций и облигаций |
Коэффициент бета. Определение
Коэффициент бета (англ. Beta, β, beta coefficient) – определяет меру риска акции (актива) по отношению к рынку и показывает чувствительность изменения доходности акции по отношению к изменению доходности рынка. Коэффициент бета может быть рассчитан не только для отдельной акции, но также и для инвестиционного портфеля. Коэффициент используется как мера систематического риска, и применяется в модели У.Шарпа – оценки капитальных активов CAPM (Capital Assets Price Model). В первые, коэффициент бета рассмотрел Г. Марковиц для оценки систематического риска акций, который получил называние индекс недиверсифицируемого риска. Коэффициент бета позволяет сравнивать между собой акции различных компаний по степени их риска.
Формула расчета коэффициента бета
где:
β – коэффициент бета, мера систематического риска (рыночного риска);
ri – доходность i-й акации (инвестиционного портфеля);
rm – рыночная доходность;
σ 2 m – дисперсия рыночной доходности.
★ Excel таблица для формирования инвестиционного портфеля ценных бумаг (рассчитай портфель за 1 минуту) + оценка риска и доходности |
★ Программа InvestRatio – расчет всех инвестиционных коэффициентов в Excel за 5 минут (расчет коэффициентов Шарпа, Сортино, Трейнора, Калмара, Модильянки бета, VaR) + прогнозирование движения курса |
Анализ уровня риска по значению коэффициента бета (β)
Коэффициент бета показывает рыночный риск акции и отражает чувствительность изменения акции по отношению к изменению доходности рынка. В таблице ниже показана оценка уровня риска по коэффициенту бета. Коэффициент бета может иметь как положительный, так и отрицательный знак, который показывает положительную или отрицательную корреляцию между акцией и рынком. Положительный знак отражает, что доходность акций и рынка изменяются в одном направлении, отрицательный – разнонаправленное движение.
Значение показателя
Уровень риска акции
Направление изменения доходности акции
Данные для построения коэффициента бета информационными компаниями
Коэффициент бета используется многими информационно-инвестиционными компаниями для оценки систематического риска: Bloomberg, Barra, Value Line и др . Для построения коэффициента бета используются месячные/недельные данные за несколько лет. В таблице показаны основные параметры оценки показателя различными информационными компаниями.
Информационные компании
Можно заметить, что Bloomberg проводит краткосрочную оценку показателя, тогда как Barra и Value Line используют месячные данные доходностей акций и рынка за последние пять лет. Долгосрочная оценка может сильно быть искажена вследствие влияния на акции компании различных кризисов и негативных факторов.
Коэффициент бета в модели оценки капитальных активов – CAPM
Формула расчета доходности акций по модели капитальных активов CAPM (Capital Assets Price Model, модель У.Шарпа) имеет следующий вид:
где:
r – будущая ожидаемая доходность акций компании;
rf – доходность по безрисковому активу;
rm – доходность рынка;
β – коэффициент бета (мера рыночного риска), отражает чувствительность изменения стоимости акций компании в зависимости от изменения доходности рынка (индекса);
Модель CAPM была создана У.Шарпом (1964) и Дж. Линтером (1965) и позволяет спрогнозировать будущее значение доходности акции (актива) на основании линейной регрессии. Модель отражает линейную взаимосвязь планируемой доходности с уровнем рыночного риска, выраженного коэффициентом бета.
Доходность по безрисковому активу, на практике, берется как доходность по государственным ценным бумагам ГКО, ОФЗ. Доходность по ним в России составляет около 12%. Доходность можно посмотреть на сайте ЦБ в разделе «Ставки рынка ГКО-ОФЗ».
Для расчета рыночной доходности используют доходность индекса или фьючерса на индекс (индекс ММВБ, РТС – для России, S&P500 – США).
Пример расчета коэффициента бета в Excel
Рассчитаем коэффициент бета в Excel для отечественной компании ОАО «Газпром». Данная компания имеет обыкновенные акции, котировки которых можно посмотреть на сайте finam.ru в разделе «Экспорт данных». Для расчета были взяты месячные котировки акции ОАО «Газпром» (GAZP) и индекса РТС (RTSI) за период с 31.01.2014 по 31.01.2015 г.
Далее необходимо рассчитать доходности по акции и индексу, для этого воспользуемся формулами:
Для расчета коэффициента бета необходимо рассчитать коэффициент линейной регрессии между доходностью акций ОАО «Газпром» и индекса РТС. Рассмотрим два варианта расчета коэффициента бета средствами Excel.
Вариант №1. Расчет через формулу Excel
Расчет через формулы Excel выглядит следующим образом:
Вариант №2. Расчет через надстройку «Анализ данных»
Второй вариант расчета коэффициента бета использует надстройку Excel «Анализ данных». Для этого необходимо перейти в главном меню программы в раздел «Данные», выбрать опцию «Анализ данных» (если данная надстройка включена) и в инструментах анализа выделить «Регрессия». В поле «Входной интервал Y» выбрать доходности акции ОАО «Газпром», а в поле «Выходные интервал X» выбрать доходности индекса РТС.
Далее мы получим отчет по регрессии на отдельном листе. В ячейке В18 показано значение коэффициента линейной регрессии, который равен коэффициенту бета = 0,46. Также проанализируем другие параметры модели, так показатель R-квадрат (коэффициент детерминированности) показывает силу взаимосвязи между доходностью акции ОАО «Газпром» и индекса РТС. Коэффициент детерминированности равен 0,4, что является довольно мало для точного прогнозирования будущей доходности по модели CAPM. Множественный R – коэффициент корреляции (0,6), который показывает наличие зависимости между акцией и рынком.
Значение 0,46 коэффициента бета для акции свидетельствует о умеренном риске и в тоже время сонаправленность изменения доходностей.
★ Программа InvestRatio – расчет всех инвестиционных коэффициентов в Excel за 5 минут (расчет коэффициентов Шарпа, Сортино, Трейнора, Калмара, Модильянки бета, VaR) + прогнозирование движения курса |
Недостатки использования коэффициента бета в модели CAPM
Рассмотрим ряд недостатков присущих данному коэффициенту:
- Сложность использования коэффициента бета для оценки низколиквидных акций. Данная ситуация характерна для развивающихся рынков капитала, в частности: России, Индии, Бразилии и т.д.
- Не возможность оценки малых компаний, не имеющих эмиссий обыкновенных акций. Большинство отечественных компаний не проходили процедуры IPO.
- Неустойчивость прогноза коэффициента бета. Использование линейной регрессии для оценки рыночного риска по ретроспективным данным не позволяет получать точные прогнозы риска. Как правило, трудно прогнозировать коэффициент бета более 1 года.
- Не возможность учета несистематических рисков компании: рыночной капитализации, исторической доходности, отраслевой принадлежности, критериев P/E и т.д., которые оказывает влияние на величину ожидаемой доходности.
Модификация коэффициента бета
Так как коэффициент, предложенный У. Шарпов не имел должной устойчивости и не мог использоваться для прогнозирования будущей доходности в модели CAPM, различными учеными были предложены модификации и корректировки данного показателя (англ. adjusted beta, modified beta).Рассмотрим скорректированные коэффициенты бета:
Модификация коэффициента бета от М.Блюма (1971)
Маршал Блюм показал, что со временем коэффициенты бета компаний стремятся к 1. Формула расчета скорректированного показателя следующая:
Использование данных весовых значений позволяет более точно спрогнозировать будущий систематический риск. Так данную модификацию используют многие информационные агентства, такие как: Bloomberg, Value Line и Merrill Lynch.
Модификация коэффициента бета от Бава-Линдсберга (1977)
В своей корректировке Линдсберг предложил рассчитывать односторонний коэффициент бета. Главный постулат заключался в том, что изменение доходности выше определенного уровня большинство инвесторов не рассматривают как риск, а риском считается только то, что ниже уровня. За минимальный уровень риска в данной модели был доходность безрискового актива.
где:
ri – доходность акции; rm – доходность рынка; rf – доходность безрискового актива.
Модификация коэффициента бета от Шоулза-Виллимса
β-1, β, β1 – коэффициенты беты для предыдущего (-1) текущего и следующего (1) периода;
ρm – коэффициент автокорреляции рыночной доходности.
Модификация коэффициента бета от Харлоу-Рао (1989)
Формула отражает одностороннюю бету, с предположением, что инвесторы рассматривают риск только как отклонение от среднерыночной доходности вниз. В отличие от модели Бава-Линдсберга за минимальный уровень риска брался уровень среднерыночной доходности.
где: μi – средняя доходность акции; μm – средняя доходность рынка;
Помимо коэффициента бета на практике используют другие показатели риска-доходности инвестиционного портфеля, ПИФа, более подробно узнать про современные показатели оценки инвестиций вы можете в моей статье: “Оценка эффективности инвестиций, инвестиционного портфеля, акций на примере в Excel“. О практике оценке риска инвестиции читайте в статье: “Методы оценки риска VaR (Value at Risk). Рыночный риск. Пример расчета в Excel “.
Коэффициент бета для акций США
Существуют сервисы позволяющие оценить коэффициент бета для множества компаний и выделить наиболее интересные. Будем применять сервис Finviz. Чтобы найти акции менее чувствительные чем колебания фондового рынка необходимо установить коэффициент бета меньше 1.
Фильтрация акций США по бета меньше “1” позволяет найти акции для консервативного инвестора, изменчивость которых ниже изменения индекса S&P 500
Где посмотреть коэффициент бета для российских акций
Если цель узнать коэффициент бета для российских акций, то для этого можно воспользоваться сервисом investing.com. Помимо отечественных компаний коэффициент бета можно определить для иностранных. Как мы видим для акции Мультисистемы коэффициент равен 2,57 – это значит, что она в 2,5 раза более изменчивая по отношению к рыночному изменению (индексу ММВБ).
Проанализировать акции на бета можно по ссылке.
Сортировка отечественных акций по коэффициента бета. Чем выше значение тем более изменчива акция по отношению к индексу ММВБ
Высокие значения коэффициента бета при растущем рынке будут обеспечивать дополнительную прибыль, при коррекциях такие акции как правило имеют больше убытков.
Резюме
Коэффициент бета является одним из классических мер рыночного риска для оценки доходности акций, инвестиционных портфелей и ПИФов. Несмотря на сложность использования данного инструмента для оценки отечественных низколиквидных акций и неустойчивость его изменения во времени, коэффициент бета является ключевым показателем оценки инвестиционных рисков. Рассмотренные модификации коэффициента позволяют скорректировать и дать более оценку систематическому риску. С вами был Иван Жданов, спасибо за внимание.
Автор: к.э.н. Жданов Иван Юрьевич
Источник