Бизнес план искусственный интеллект

Как внедрить искусственный интеллект в бизнес – 10 шагов

Искусственный интеллект, безусловно, является растущей силой в индустрии технологий. Искусственный интеллект занимает центральное место на конференциях и демонстрирует потенциал в самых разных отраслях, включая розничную торговлю и производство. Новые продукты внедряются вместе с виртуальными помощниками, в то время как чат-боты отвечают на вопросы клиентов по большинству направлений. Тем временем, такие компании, как Google, Microsoft и Яндекс, интегрируют ИИ в качестве интеллектуального слоя во всем своем технологическом стеке. Да, у ИИ определенно есть свой момент.

Это не тот искусственный интеллект, который поп-культура заставила нас ожидать; это не разумные роботы или Скайнет, и даже не Джарвис – помощник Тони Старка. Плато искусственного интеллекта скрывается под поверхностью, делая наши существующие технологии более умными и раскрывая всю мощь данных, которые собирают предприятия.

Что это означает: широкое развитие в машинного обучения, компьютерного зрения, глубокого анализа и обработки естественного языка сделало процесс развёртывания искусственного интеллекта в вашей программном обеспечении или облачной платформе проще, чем когда-либо.

Здесь мы даём советы от некоторых экспертов, чтобы объяснить шаги, которые предприниматели могут принять, чтобы интегрировать ИИ в свою организацию и обеспечить успешное внедрение.

Познакомьтесь с ИИ

Ниже приведен ряд онлайн-ресурсов (бесплатных и платных), которые вы можете использовать для начала:

  • Курс от Udacity введение в AI и программа по искусственному интеллекту.
  • Онлайн курс по ИИ , предлагаемый Колумбийским университетом.
  • Microsoft Cognitive Toolkit с открытым исходным кодом, чтобы помочь разработчикам освоить алгоритмы глубокого обучения.
  • Библиотека программного обеспечения TensorFlow с открытым исходным кодом от Google для машинного интеллекта.
  • AI Resources, каталог с открытым исходным кодом от AI Access Foundation.
  • Страница ресурсов Ассоциации по продвижению искусственного интеллекта.
  • Руководство MonkeyLearn по машинному обучению.
  • Институт будущего жизни Стивена Хокинга и Элона Маск.
  • OpenAI, открытая отраслевая и академическая программа глубокого обучения.

Определите проблемы, которые вы хотите решить с помощью ИИ

Как только вы овладеете основами, следующий шаг для любого бизнеса – начать изучать разные идеи. Подумайте, как вы можете добавить возможности искусственного интеллекта в ваши существующие продукты и услуги. Что ещё более важно, ваша компания должна иметь в виду конкретные случаи использования, в которых ИИ мог бы решать бизнес-задачи или обеспечивать очевидную ценность.

Специфика всегда варьируется в зависимости от отрасли. Например, если компания осуществляет видеонаблюдение, она может получить большую ценность, добавив к этому процессу машинное обучение.

Определите приоритет конкретной ценности

Чтобы расставить приоритеты, посмотрите на размеры потенциала и выполнимость, и поместите их в матрицу 2×2. Это должно помочь вам расставить приоритеты исходя из краткосрочной видимости и узнать, какова финансовая ценность компании. Для этого шага вам обычно требуется понимание и признание со стороны менеджеров и топ-менеджеров.

Признание пробела во внутренних возможностях

Существует резкое различие между тем, чего вы хотите достичь, и тем, какие организационные возможности у Вас есть. Бизнес должен знать, на что он способен, а на что нет, с точки зрения технологий и бизнес-процессов, прежде чем начинать полномасштабную реализацию ИИ .

Иногда это может занять много времени. Устранение вашего внутреннего разрыва в возможностях означает определение того, что вам нужно приобрести, и любых процессов, которые необходимо внутренне развить, прежде чем вы начнёте. В зависимости от бизнеса, могут существовать проекты или команды, которые могут помочь сделать это органично для определенных бизнес-единиц.

Читайте также:  Примерный готовый бизнес план

Привлеките экспертов и создайте пилотный проект

Как только ваш бизнес будет готов с организационной и технической точек зрения, пришло время начать строить и интегрировать. Самые важные факторы здесь – начать с малого, иметь в виду цели проекта и, самое главное, знать, что вы знаете и что вы не знаете об искусственном интеллекте. Именно здесь привлечение внешних экспертов или консультантов по искусственному интеллекту может быть неоценимым.

Вам не нужно много времени для первого проекта; обычно для пилотного проекта 2-3 месяца – это хороший диапазон. Следует объединить внутренних и внешних людей в небольшую команду, возможно, из 4-5 человек, и в этот сжатый срок сосредоточиться на простых целях. После того, как пилот будет завершен, вы сможете решить, что дальше.

Также важно, чтобы опыт обеих сторон – людей, которые знают о бизнесе, и людей, которые знают об ИИ – был объединен с вашей командой пилотного проекта.

Сформируйте рабочую группу для интеграции данных

Прежде чем внедрить машинное обучение в свой бизнес, вам необходимо очистить данные, чтобы подготовить их к тому, чтобы избежать сценария «мусор в мусоре».

Внутренние корпоративные данные обычно распределяются по разным хранилищам данных в разных унаследованных системах и могут даже находиться в руках разных бизнес-групп с разными приоритетами. Поэтому очень важным шагом на пути к получению высококачественных данных является формирование перекрестной целевой группы [подразделения], объединение различных наборов данных и устранение несоответствий, чтобы данные были точными и полными, со всеми необходимыми нужными измерениями.

Хранилища – как часть плана внедрения ИИ

Включите ИИ как часть ваших ежедневных задач

Компании должны быть прозрачными в том, как технология работает для решения проблем в рабочем процессе. Это даёт сотрудникам опыт «под капотом», так что они могут четко представить, как ИИ увеличивает их роль, а не устраняет их.

Построить с балансом

Точно так же вы должны сбалансировать общий бюджет, затрачиваемый на проведение исследований, с необходимостью защиты от сбоя питания и других сценариев за счет избыточности. Вам также может понадобиться гибкость, позволяющая перенастроить оборудование при изменении требований пользователя.

Источник

Показать все, что скрыто:
из чего строятся затраты на ИИ и как их снизить

В данной статье идет речь о том, из чего складывается стоимость внедрения ИИ-решений в компаниях, разбираются неочевидные траты и предлагаются способы их снижения.

Содержание

Внедрение искусственного интеллекта в бизнес-процессы – один из главных трендов глобального технологического рынка в течение ближайших нескольких лет. Согласно отчету IDC [1] , расходы компаний на искусственный интеллект удвоятся и достигнут $110 млрд к 2024 году.

Интерес к искусственному интеллекту проявляют и российские ИТ-гиганты. Исходя из «Дорожной карты развития «сквозной» цифровой технологии `Нейротехнологии и искусственный интеллект`» [2] , к 2024 году российский рынок решений в сфере ИИ составит 160 млрд рублей, то есть всего за несколько лет увеличится в 76 раз. К 2030 году в области, связанной с ИИ, будет работать около тысячи организаций и более 10 тысяч человек.

По прогнозам McKinsey [3] , 70% компаний в течение следующих 10 лет внедрят минимум один тип технологий ИИ для решения своих бизнес-задач. Инвестировать в искусственный интеллект планирует подавляющее большинство организаций [4] (88%). Бизнес вкладывается в ИИ не только ради того, чтобы достичь прорывных результатов в отрасли, получить особый технологичный продукт, но и чтобы просто не отстать от своих конкурентов.

В этой статье мы расскажем, из чего складывается стоимость ИИ-решений, разберемся в неочевидных тратах и вместе с экспертами и разработчиками найдем способы их снижения.

Как используют ИИ. Примеры из зарубежной практики

Крупнейшие мировые корпорации давно используют ИИ-решения, чтобы оптимизировать издержки своего бизнеса и найти эффективные способы продвижения на рынке. В среднем около половины компаний [5] тратят $51 тысячу в год на внедрение технологий искусственного интеллекта, еще 13% расходуют на это от $251 до 500 тысяч, у 5% бюджет на ИИ превышает $5 млн.

Читайте также:  Бизнес планы изготовления салфеток

Один из лидеров по инвестициям в искусственный интеллект – китайская компания Alibaba [6] . С помощью предиктивной аналитики ритейлер предугадывает, за какой следующей покупкой придет потребитель, а благодаря технологии обработки естественного языка (NLP) автоматически генерирует описание товаров на сайтах.

«Всё ставим на ИИ» – слоган владельца WeChat – компании Tencent [7] . Приложение с аудиторией, превышающей 1 млрд пользователей, анализирует огромный объем данных. Повышать качество обслуживания и увеличивать число лояльных клиентов корпорации помогают распознавание речи, NLP и компьютерное зрение.

Facebook [8] применяет комплекс технологий ИИ для улучшения работы своей экосистемы. DeepText позволяет автоматически анализировать и интерпретировать содержание и эмоциональную окраску тысяч постов, которые каждую секунду публикуются в социальной сети. DeepFace помогает распознавать людей на фото с точностью в 97%, а также может идентифицировать и удалять из сети неприемлемый контент.

На какие продукты в сфере ИИ тратят бюджеты российские компании

На российском рынке на ИИ больше всего тратит крупный бизнес: банки, ритейл, нефтегаз, телеком. В ходе цифровой трансформации компании, как правило, решают три основные задачи:

  • Повышение операционной эффективности бизнеса и трансформация производственных процессов.
    Какие ИИ-решения используются: предиктивная аналитика и прогнозирование – например, сбоев и поломок оборудования, планирование загрузки, потребностей в ресурсах и т.д.
  • Улучшение клиентского опыта – понимание потребностей потребителей, повышение удовлетворенности покупателей, увеличение выручки, создание и развитие клиентских сервисов.
    Какие ИИ-решения используются: чат-боты, голосовые помощники, интеллектуальные колл-центры, рекомендательная поддержка и кросс-продажи, анализ поведения и предпочтений клиентов, интерактивные виды коммуникаций с потребителем, омниканальность.
  • Создание и внедрение культуры непрерывных улучшений и преобразований – иначе говоря, создание среды для развития нужных компетенций, управления инновациями и цифровой трансформацией, формирование цифровых активов, запуск новых бизнесов и сервисов, принятие решений на основе данных и интеллектуальных сервисов.
    Какие ИИ-решения используются: системы поддержки принятия решений, внедрение интеллектуальных сервисов в работу основных и вспомогательных подразделений, в том числе в аналитические и инженерные центры, R&D, проектные офисы, юридическую, финансовую и HR-службу. Эти продукты особенно востребованы крупными компаниями, которые стремятся к интеллектуализации и реализуют стратегию цифровой трансформации.

Сколько стоит внедрение ИИ-решений

Цена внедрения ИИ для компаний может варьироваться. В первую очередь стоимость зависит от того, использует ли фирма готовый софт или продукт разрабатывается под задачи конкретной организации. Кроме того, на цену влияет функционал системы – чем шире набор функций, тем дороже обойдется решение для компании.

В целом затраты на разработку ИИ-решений можно разделить на три группы:

  • Расходы на специалистов. Зарплаты сотрудников съедают значительную часть бюджета проекта. ИИ-решения – это всегда сложный продукт и команда, как правило, включает большое число экспертов. Среди них – менеджеры проекта, ИТ-архитекторы, бизнес-аналитики, UI-дизайнеры, дата-сайентисты, тестировщики, DevOps-инженеры и т.д.
  • Расходы на инфраструктуру. Аренда серверов, затраты на телекоммуникации, закупка необходимого оборудования для тестирования – еще одна важная статья расходов. При этом часть денег можно сэкономить – если, к примеру, использовать не физические, а облачные сервера.
  • Расходы на вспомогательное ПО. Использование API, операционных систем, платных баз данных – эти затраты обычно также включаются в стоимость продукта. Данные пункты не являются чрезмерно затратными, но также способствуют увеличению бюджета на разработку ИИ-решений.
  • Обеспечение информационной безопасности. Там, где есть большие массивы данных, необходимо обеспечение безопасности систем. При внедрении решений такого класса на приведение архитектуры и инфраструктуры в соответствие требованиям информационной безопасности тратятся большие бюджеты — иногда сопоставимо или даже больше стоимости самого решения.

Скрытые затраты на ИИ

Помимо понятных заказчику затрат на специалистов и инфраструктуру, в стоимость ИИ-решений закладывается множество других факторов, о которых, как правило, знают только сами разработчики продукта. Особенность создания таких решений заключается в работе с огромными массивами информации – такие аспекты, как качество и полнота данных могут влиять на конечную стоимость не меньше, чем трудоемкая работа по встраиванию готового решения в текущие бизнес-процессы организации.

Так, среди скрытых затрат могут быть:

  • Получение и подготовка данных. От полноты и качества данных напрямую зависит успех будущего решения — чем грамотнее собрана и обработана информация, тем быстрее и качественнее можно реализовать продукт. При этом исследование и подготовка данных может занимать у data science-специалистов до 80 процентов времени.
  • Разметка данных – одна из самых затратных статей. В основном эта операция продолжает осуществляться силами человека и, как правило, включает нескольких итераций после анализа полученных результатов. От того, насколько качественно была произведена разметка, во многом будет зависеть корректность работы ИИ-решения.
  • Поиск и подбор моделей, которые будут наиболее оптимально решать задачу. Разработчики пробуют разные методы, пока не добьются лучшего результата, и этот процесс может быть достаточно трудоемким. На май 2021 года существует множество готовых алгоритмов, подходов и библиотек, однако работа по их дообучению и настройке остается довольно кропотливым делом.
  • Управление интерпретируемостью ИИ. Иногда для клиента важно видеть не только результат работы системы, но и понимать, почему она приняла то или иное решение. В таких случаях создается специальный аналитический модуль для визуализации `хода мысли` ИИ.
  • Разработка пользовательской стороны. ИИ-решения могут встраиваться как в другие системы – тогда необходимо обеспечить бесшовную интеграцию продукта (обмен данными в нужных форматах, качестве, периодичности и т.д.), так и представлять собой полноценное решение. Во втором случае в затраты включаются работы по проектированию и реализации клиентской части системы.
  • Поддержка моделей машинного обучения после внедрения решения.
  • Доработка систем — например, в части функций, не предусмотренных на стадии формулирования требований к системе.
Читайте также:  Клиенты салона красоты бизнес план

Как снизить расходы на ИИ

Существует несколько возможностей снизить затраты на создание и внедрение ИИ-решений. Вот наиболее эффективные из них:

  • Нанимайте специалистов с умом. Как правило, при разработке ИИ-решений крупный бизнес или формирует собственную команду разработки, или привлекает стороннего подрядчика. Второй вариант позволяет создавать продукт быстрее. Однако не все компании-разработчики имеют реальный опыт создания систем искусственного интеллекта – при выборе подрядчика обращайте внимание на компетентность команды и портфолио реализованных кейсов.
  • Работайте с данными правильно. Старайтесь собрать и передать разработчику максимально большой массив информации. При этом важно делиться наиболее репрезентативными данными, а не идеальной выборкой хорошо структурированных данных. Это поможет избежать популярной проблемы, когда решение хорошо работает на демо, а при работе с реальными данными выдает непригодный результат. Также будьте готовы разметить часть данных — только вы обладаете экспертностью в своей предметной области и сможете выполнить эту операцию наиболее корректно.
  • Правильно определите цели и задачи создаваемого ИИ-решения. Опишите подробно, для чего будет использоваться разрабатываемая система, как устроены процессы, в которые внедряется продукт. Оцените, какие боли в первую очередь должен решать ИИ, а также какое развитие система получит в перспективе – заложите это в возможности проектируемого решения. Понимание подрядчиком ваших задач и потребностей позволит достичь максимального эффекта от создаваемого продукта.
  • Используйте вычислительные мощности машин оптимально. Выше мы говорили о снижении расходов путем перехода на облачные сервера. Данная практика в России пока не везде применима, в то время как зарубежные активно применяют распределенные дата-центры, размещенные в различных странах, что позволяет оптимизировать затраты на ИТ-инфраструктуру. Идеальный вариант — нанять опытного DevOps-специалиста: в перспективе это сэкономит больше денег на инфраструктуре и безопасности контура.

Подведем итог

Если вы решили осознанно подружиться с ИИ и развиваться эволюционно в этом направлении, то стоит определить для себя, какая из зон цифровой трансформации будет наиболее восприимчива к изменениям или получит максимальный эффект от внедрения цифровых решений – производственная или операционная эффективность, клиентский опыт, трансформационный офис и культура преобразований.

Данные – это ценнейший актив. Не просто так вопросы управления цифровыми активами относятся к компетенциям топ-менеджеров — CDO или даже CEO. Здорово, что сегодня компании учатся работать с данными: извлекать, накапливать, обрабатывать и применять их в своей деятельности. Важно, чтобы заказчики принимали активное участие в проектах, связанных с ИИ, ведь в будущем подобные инструменты обязательно позволят компаниям наращивать новые компетенции и обходить конкурентов в набирающей обороты цифровой гонке.

Автор — Айканыш Орозбаева, руководитель направления по работе с партнерами и клиентами.

Источник

Оцените статью